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Abstract

Various schemes for determining the maximum likelthood-based figures of merit for phases of

structure factors have been considered. It is shown that the use of the likelihood function of all the available
structure factors provides the adequate estimates of the accuracy of phases calculated for the atomic models
with independent errors in the coordinates, but, at the same time, systematically overestimates the figures of
merit for models preliminarily refined in the reciprocal space. It is shown that the use of the marginal likelihood
function calculated from ¢he control set of reflections allows the elimination of the systematic bias estimates.
A method for reducing the statistical dispersion of the estimates based on a small number of control reflections

is suggested. © 2000 MAIK “Nauka/Interperiodica”.

INTRODUCTION

In crystallography of macromolecules, the Fourier
maps of electron density are often calculated with the
use of the coefficients

mst'l"exp(i(p;""'I), (1)

where s is the reciprocal-lattice point, F,  is the exper-
imentally determined structure-factor modulus, and

maod

@, is the structure-factor phase calculated for a cer-
tain preliminarily chosen atomic model of the structure.
The weighting factor m (the so-called figure of merit of
the phase determination) is introduced to compensate
possible errors in the Fourier coefficient caused by the
discrepancy between the experimentally determined

mod true

phase @, " and the true phase ¢, . The probabilistic

assumptions about the accidental nature of the errors in
the preliminary atomic model of the structure allow one
to determine the weights my as the mathematical expec-

tations of the quantities cos(@.™ — @"**) [1] and lead
to the widely used formula

my = At FFMe), 2)

where the function A(x) is either the hyperbolic tangent
(for centrosymmetric reflections) or the ratio of the
modified Bessel functions /,(2x)/l(2x) (for the noncen-

trosymmetric ones), F* is the structure-factor modu-
lus calculated for the preliminarily model, and & is the
coefficient compensating the differences between the
average intensities of reflections of various types. The
parameter f, in (2) reflects the errors made in the con-
struction of the preliminary model. The correct esti-

mate of this error (i.e., the estimate of the adequacy of
the preliminary model) is the key factor in the determi-
nation of the weights m.

On the average, the “appropriately calculated”
weights mg should correspond (be close) to the real val-

true mod

ues of cos(Q,  — @, ). The degree of this correspon-

dence can be checked in some test situations; i.e., in the
situations where, in addition to the preliminary model,
one also uses sufficiently reliable “sought” atomic
structure such that the phases determined for this struc-
ture can be assumed to be the true ones. Such a test per-
formed by Read [2] showed that many of the proce-
dures suggested earlier for calculating the parameters ¢,
yielded unrealistic figures of merits, and that the best
results are obtained within the maximum likelihood
approach [2-5]. However, as was indicated in [2-5], the
use of this approach gives rise to some difficulties in the
work with the preliminary models subjected earlier to
crystallographic refinement. Below, we analyze some
modifications of this method that allow one to obtain
the realistic figure of merits for the phases calculated
for the preliminarily refined atomic models.

The tests were performed on the experimental data
for Protein G (sp. gr. P2,2,2,, the unit cell dimensions
34.9 x 40.3 x 42.2 A) with the known atomic structure
determined at a high resolution.

The refinement of the test preliminary models was
performed with the use of the FROG complex of pro-
grams [6], the maximum likelihood-based estimates
(the ML estimates) and the estimates based on the max-
imization of the marginal likelihood function (the
MML estimates) and the LBEST program [7] specially
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Fig. 1. Cosines of phase errors predicted from ML estimates
(triangles) and the real values (circles) for (/) the model
with independent errors in the atomic coordinates and
(2) for the same model upon 12 cycles of its refinement in
the reciprocal space.

designed in this study in accordanc€ with the method
considered elsewhere [3, 5].

ML-ESTIMATES OF THE PARAMETERS
OF PROBABILITY DISTRIBUTIONS

The essence of the probabilistic approach to the esti-
mation of the errors in the phases [8—10] is the allow-
ance for the additional information about the object
under study in the form of a statistical hypothesis on the
character of error distribution in the preliminary model.
The simplest and the most rigorous variant of this
hypothesis reduces to the assumption that all the errors
are reduced to the errors in the atomic coordinates and
that they are independent and distributed according to
the normal law with the nonzero mean and the same
dispersions (more complicated examples were consid-
ered in [5, 7, 11]). Similar hypotheses allow one to con-
sider the values of the structure factors as random quan-
tities and obtain the expressions for their probability
distributions. The resulting distributions for a large
class of initial hypotheses are described by the same
formula,

P(Fsa (pe) oc Fsexp{_lFsexp(i(ps)

mo . mo 2 (3)

—ast deXP(I(Ps d)’ /EsBs}
and differ only by the form of the functional depen-
dences of o4 and B, on the parameters describing the
error distribution in the atomic model. Therefore, there
is no need to fix any concrete hypothesis about the
atomic model. We proceed from the assumption that the
probability distribution for a structure factor is
described by formula (3) with certain parameters 0
and B,. The mathematical expectation of the cosine of
the phase error in this case is given by formula (2) with
t, = o /B,. Thus, we arrive at one of the standard prob-
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lems of the mathematical statistics—the problem of
selection of the distribution from class (3) or the prob-
lem of estimating the parameters o and ;.

The maximum likelihood-based methods of esti-
mating the o and B, parameters were described else-
where [2-5]. The method reduces to the following. The
estimates of the o and 3, quantities for a thin spherical
layer of the reciprocal space are taken to be the con-
stants maximizing the probability of coincidence of the
structure-factor moduli distributed according law (3)

and the { F's"” } values obtained in the real experiment.

ESTIMATES OF FIGURES OF MERITS

Within the framework of the approach used, the fig-
ures of merits calculated by formula (2) are also ran-
dom quantities possessing all the characteristics typical
of random quantities. One of the most important statis-
tical characteristics of such estimates is the bias—the
deviation of the expected value of the estimate from its
true value. Another important characteristic is the
expected root-mean-square deviation of the estimate
from its true value (the estimate dispersion).

The first run of the tests was devoted to the study of
the bias of the figure of merit calculated from ML esti-
mates for the o and B, parameters. In order to exclude
the effect of the experimental errors and inaccuracy of
the initial model, we used the data calculated for the
structure of Protein G without water molecules as the
exact values of the phases and the experimental values
of the structure factor moduli. The same model but with
deliberately introduced independent random errors in
the atomic coordinates (the mean absolute value 0.8 A)
was used as the starting model for the further refine-
ment. Figure 1 shows the results of the use of the ML
estimates for the starting model and for the mode upon
twelve cycles of its refinement in the reciprocal space.
It is clearly seen that the figures of merits based on ML
estimates show no bias in independent errors in the
atomic coordinates of the model, but are systematically
overestimated for the preliminarily refined models.

ELIMINATION OF BIAS. MML ESTIMATES

Earlier, we suggested the modified method for
determining the o and B, parameters [5] based on the
Briinger R-free likelihood-based method [12] also used
in [13-15]. The likelihood function in this method is
calculated using only the reflections, which were pre-
liminarily excluded from the refinement process. Here-
after the parameter values obtained by maximization of
this marginal likelihood function are called the MML
estimates. Our further experiments were directed to the
determination of the bias of the figures of merit based
on the MML estimates for the o and B; parameters. In
each test, the refinement procedure was preceded by the
selection of a control set of reflections that should be
excluded from the refinement and should be used for
2000
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Fig. 2. Cosines of phase errors predicted from MML esti-
mates (triangles) and the real values (circles) for the refine-
ment (/) without and (2) with thé stereochemical restraints.
Model data.

the subsequent estimation of the o and B, parameters.
Then the figure of merits were calculated for all the
reflections using formula (2) with ¢, = o/B,. *

Figure 2 shows the results of such calculation for
two different refinement strategies. Using the first strat-
egy, we performed 24 cycles of refinement not impos-
ing any the stereochemical restraints; the second strat-
egy included 12 cycles of refinement under the stere-
ochemical restraints. In order to reduce the dispersion
in the estimates arising in the determination of the dis-
tribution parameters from a small number of experi-
mental data, we first used quite a large number of con-
trol reflections (up to 50% of all the reflections from the
zone of a 1.8 A resolution). It is seen from Fig. 2, that
both strategies resulted in no bias; the predicted mean
values of cos(A@) are rather close to the true ones and
reflect different quality of the models obtained upon the
refinement.

All the subsequent tests were performed using the
same starting model, but the refinement, the estima-
tion of the o and B, parameters, and the calculation of
the figures of merit were made with the use of the real
experimental data. In these cases, the exact phase val-
ues were taken to be the phases calculated using all
the atoms from the model of Protein G (including
water molecules). It should be emphasized, that in this
case, the sources of the errors in the phases calculated
according to the model were both positional errors for
the atoms of the model and some missing atoms (those
of water molecules). The results obtained in this case
with the use of MML estimates are shown by triangles
in Figs. 3 and 4. The control set of reflections in these
tests attained about 50 (Fig. 3) or 10% (Fig. 4) of the
total number of reflections. It is seen that there the
estimates have no bias with respect to their true
values.
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Fig. 3. Cosines of phase errors predicted from MML esti-
mates (triangles) and the real values (circles) for the model
refined over 50% of the experimental data.

REDUCTION OF STATISTICAL DISPERSION
OF MML ESTIMATES

As showed our calculations, a reduction of the per-
centage of control reflection from 50% to a more real-
istic 10% of the total number of reflections without
introducing any bias into the estimates results in an
almost double increase of the dispersion in the pre-
dicted figures of merit. The statistical dispersion in
such estimates can be reduced by different methods.
The first method consists in the use of some additional
hypotheses on the character of the errors in the atomic
model and, thus, in a decrease of the number of the
parameters to be determined and, at the same time, an
increase of the ratio of the number of measurements to
the number of the parameters to be determined. For
example, one can assume that the model includes all the
structure atoms and that the errors in their coordinates
are independent and distributed over the radial-sym-
metric normal law with the same (although unknown)
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Fig. 4. Cosines of phase errors predicted from MML (trian-
gles) and smoothed MML (squares) estimates and their true
values (circles) for the model refined over 90% of the exper-
imental data.
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standard deviation v. Assuming that the structure fac-
tors are normalized, we can show that the following
relationships are valid

2.2 2

o, = exp(-2n°v's’), B, = l—a,z. @)

Thus, we reduced the problem to the determination of
one parameter V instead of two (a and B) for each zone
of the reciprocal space. A somewhat more general vari-
ant of this approach was considered in [15], where
instead of the additional assumption on the character of
the coordinate errors, it was assumed that the o, and B,
parameters obey a relationship of type (4). The advan-
tage of the latter approach consists in the considerable
improvement of the ratio of the number of measure-
ments to the number of .the parameters to be deter-
mined, which, in turn, reduces the statistical dispersion
of the estimates. On the other hand, this approach
requires the use of some new, not always obvious,
assumptions. The problem of seatch for the optimum
parameters becomes much more complicated and hin-
ders the search for the global minimum. Thus, in such
a situation, Brigogne and Irwin [15] had to use only the
local likelihood maximization.

Another approach to the reduction of the statistical
dispersion of the estimates consists in the change of the
requirement of a fixed functional dependence of the o
and B parameters on s to the requirement that these
dependences should be smooth. Such a requirement
can be taken into account, e.g., by introducing a simple
correction in the functional to be maximized, in which
a penalty is applied where the value lies far from the
line connecting two neighbors [13]. However, in this
case as well, one has to use only the local optimization.

However, the additional requirement of smoothness
can be implemented in a simpler way. As earlier, the
initial values of the o and B parameters for each zone
are determined from the condition of the global maxi-
mum. Then, the thus obtained values are smoothed out
using one of the standard schemes. The simplest
smoothing procedure is illustrated by Fig. 4. The ratio
t = 0/B, initially determined for each zone of the recip-
rocal space, was then substituted by the values aver-
aged over the previous, the current, and the following
zones. The thus obtained smoothed ¢ values were used
to calculate figures of merit by formula (2). It is also
seen from Fig. 4 that this procedure considerably
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reduces the errors in the calculated estimates and
allows one to use a relatively small number of control
reflections without any negative effect on the refine-
ment process.
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