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For a chosen unit cell, a function de®ned in real space (a standard signal) is

considered as a crystallographic wavelet-type function if it is localized in a small

region of the real space, if its Fourier transform is likewise localized in reciprocal

space, and if it is a periodical function which possesses a symmetry. The ®xed-

scale analysis consists in the decomposition of a studied distribution into a sum

of copies of the same standard signal, but shifted into nodes of a grid in the unit

cell. For a speci®ed standard signal and grid of the permitted shifts in the unit

cell, the following questions are discussed: whether an arbitrary function may be

represented as the sum of the shifted standard signals; how the coef®cients in the

decomposition are calculated; what is the best ®xed-scale approximation in the

case that the exact decomposition does not exist. The interrelations between the

®xed-scale decomposition and the phase problem, automatic map interpretation

and density-modi®cation methods are pointed out.

1. Introduction

The wavelet transform (see e.g. Combes et al., 1988; Chu, 1992;

Daubechies, 1993) was found to be a useful tool in different

applications for signal analysis, data compression and image

processing. Nevertheless, with a few exceptions (Pouligny et

al., 1991; Main, 1996; Ferrer et al., 1998), this tool has not yet

found the proper place in the ®eld of crystallography. At the

same time, the basic ideas of the wavelet transform are very

natural for crystallography and are present implicitly in a

number of crystallographic approaches. Hence, the use of the

advanced mathematical tools for wavelet analysis may permit

new possibilities for crystallographic applications and improve

the corresponding computer procedures. The wavelet trans-

form can be viewed (Daubechies, 1993) as a synthesis of ideas

that have emerged since the 60's from mathematics, physics

and electrical engineering. Nevertheless, precursors of

wavelet-transform ideas can be found much earlier in different

branches of science and in crystallography in particular. The

basic idea of wavelet analysis, namely to use a set of standard

blocks (wavelets) of different sizes to represent the object, is

very close (if not identical) to that of representing an electron-

density distribution as a sum of contributions of atoms. Some

additional requirements which are usually applied to the set of

chosen blocks re®ne this rather vague idea. The main demands

that are usually applied to the wavelets is that they are

localized or have a fast decay in both real and reciprocal

spaces (or in both time and frequency in other applications).

The fast decay in reciprocal space usually gives them their

characteristic appearance with `ripples' in real space which

clari®es the use of the term wavelet.

Wavelet analysis is a technique that consists in decomposing

an arbitrary signal into elementary contributions that are

constructed from one standard signal (wavelet) by means of

dilations and translations. The values of the dilations and

translations can be chosen to vary continuously or to be

restricted to a discrete lattice. We shall restrict our consid-

eration to the decomposition of a real-space function into a

weighted sum of shifted copies of the same standard signal

(wavelet) without additional dilations. We use the term

wavelet here to emphasize our interest to space-localized

contributions. Nevertheless, most of the results are valid for an

arbitrary standard signal too. Such a decomposition may be

considered as one step in the full multiresolution wavelet

analysis. A peculiarity of the use of wavelet analysis in crys-

tallography (which distinguishes it from the usual applications

of wavelet analysis) is that here we have to work simulta-

neously with two scales. The ®rst one is the scale of the unit-

cell dimensions ± the object function is periodic and it is

natural to require the same for the building blocks. On the

other hand, the scale of the details we try to study is much ®ner

than the unit-cell dimensions, so the blocks that are used must

be localized in a region of the unit cell that is suf®ciently small

compared with the period. We use the term crystallographic

wavelet analysis to emphasize that the standard signal is

presumed to satisfy the periodicity of the crystal space and,

when necessary, appropriate crystallographic symmetries. To

satisfy these requirements, some modi®cation is introduced

into the basic approaches of wavelet analysis (Daubechies,

1993). We start in xx2 and 3 with the one-dimensional case to

demonstrate the basic ideas and approaches. General multi-

dimensional algorithms are presented and necessary theorems
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are proved in Appendix A. x4 presents some applications of

®xed-scale decompositions in macromolecular crystallog-

raphy.

One of the most important advantages of wavelet analysis is

that it provides an ef®cient means of data compression. When

a suitable wavelet basis is chosen for a class of objects of

similar nature, it often occurs that only a small number of

wavelet coef®cients have signi®cant values, while the others

are negligible. So a small number of strong wavelet coef®cients

need to be stored to represent the object accurately. These

algorithms were applied recently to data compression for

diffraction patterns (Ferrer et al., 1998). We consider in x4 the

problem of data compression from a different point of view

with its relation to the phase problem. It is demonstrated with

a test that it is enough to have the number of real wavelets

close to the number of the measured intensities to represent a

low-resolution Fourier synthesis with an accuracy close to that

of the MIR-phased synthesis. It must be noted that, contrary

to some other methods of parameterization of low-resolution

syntheses (Lunin et al., 1995, 1998), the wavelet coef®cients

are related to the structure factors by linear relationships.

Another area of wavelet transform applications is data

®ltering, where once again the idea that the strongest wavelet

coef®cients are mostly reliable is used. In such a case,

suppression of small wavelet coef®cients with subsequent

calculation of the modi®ed function may reduce the noise. A

crystallographic example of such ®ltering consists of proce-

dures for phase improvement in which a noisy Fourier

synthesis is interpreted in terms of atomic coordinates and

then the atom-based representation of the electron density is

used to calculate improved phases (Agarwal & Isaacs, 1977;

Lunin & Urzhumtsev, 1984; Lunin et al., 1985; Lamzin &

Wilson, 1993; Vellieux, 1998). It is worth noting that in usual

applications of wavelet-based ®ltering the smallest wavelet

coef®cients are frequently the ones corresponding to the

highest scale, and they are often assumed as corresponding to

a noise. Nevertheless, for macromolecular Fourier syntheses,

there exists another possibility: when small wavelet coef®-

cients correspond to wavelets placed into the solvent region.

Obviously, the second type of ®ltering may only be achieved

by means of ®xed-scale wavelet analysis. As is shown below,

grid-restricted values in a Fourier synthesis may be considered

to some extent as wavelet coef®cients. So the methods that use

these values as primary variables (Urzhumtsev, 1997; Somoza

et al., 1998) and different density-modi®cation methods

(Podjarny et al., 1996) may be formulated in terms of wavelet

analysis too.

If the object function possesses some crystallographic

space-group symmetry, then the wavelet function may be

required to have a symmetry too. It is shown in Appendix A

that there exists a kind of duality in the symmetry of the

wavelet function and the wavelet coef®cients of the object

function. If the wavelet has the space-group symmetry, then

the wavelet coef®cients have the point-group symmetry and

vice versa.

2. One-dimensional fixed-scale decomposition

We start with the one-dimensional case to elucidate the main

problems and ideas of ®xed-scale analysis of the periodical

functions. The multidimensional case is covered more thor-

oughly in Appendix A.

2.1. Definitions

We consider here functions f �x� depending on one real

variable x and suppose implicitly that every function consid-

ered is a periodic one with the period 1:

f �x� 1� � f �x� for all real x: �1�
Furthermore, we suppose that f �x� is a real-valued function,

i.e. its structure factors display Hermitian symmetry:

f̂ �ÿh� � f̂ �h� for all h: �2�
Here and below, f̂ stands for structure factors of the function f ,

i.e.

f̂ �h� � R1
0

f �x� exp�2�ihx� dx; h 2 Z; �3�

f �x� � P
h2Z

f̂ �h� exp�ÿ2�ihx�; x 2 R; �4�

where R and Z denote the sets of all real and all integer

numbers, respectively.

2.2. Wavelets

Let ��x� be a real periodic function which will be used below

as a `building block' in the decomposition of a signal f �x�. We

call ��x� the standard signal in general, or the standard wavelet

if ��x� may be considered to be localized in a vicinity of the

origin, i.e. it has signi®cant values at points close to the origin

and negligible values at points remote from the origin.

(Naturally, for periodic functions, we consider as the origin not

the point x � 0 alone but all integer points.) Some examples of

what we call wavelets are shown in Figs. 1 and 2. Similar to

(3)±(4), the standard signal ��x� is de®ned uniquely by its

structure factors �̂�h�, h 2 Z.

Let the regular grid with the number of divisions M be

introduced in the interval �0; 1�. The set of functions
Figure 1
The wavelet (25) for P � 10.



W�;M � f�n�x�gMÿ1
n�0 ; �5�

where the

�n�x� � ��xÿ n=M�; n � 0; . . . ;M ÿ 1; �6�

are copies of the standard signal shifted to the points of the

grid in the unit cell, is said to be the W system of order M

generated by ��x�.

2.3. Fixed-scale representation

Let the standard signal ��x� and the number of divisions M

be chosen. We call the decomposition of the function f �x� into

a weighted sum of shifted copies of the standard signal:

f �x� � PMÿ1

n�0

A�n���xÿ n=M� � PMÿ1

n�0

A�n��n�x� �7�

[i.e. the representation of f �x� as a linear combination of the

elements from the W�;M system], the ®xed-scale representation

of f �x�. The real numbers A�0�; . . . ;A�M ÿ 1� (which may be

positive, negative or zero) are called the wavelet coef®cients.

The `®xed-scale' term is used to emphasize that every member

in the sum (7) differs from the standard signal ��x� only by the

multiplier A�n� and the shift in real space by n=M.

The questions that arise immediately and which are

discussed below are:

(i) whether a function f �x� can be represented in the form

(7) with some previously speci®ed ��x� and M;

(ii) how the coef®cients A�n� can be calculated provided the

function f �x� is known;

(iii) whether the presentation (7) of f �x� is unique;

(iv) what is the best approximation by the sum (7) for a

function f �x� which cannot be expanded into the sum (7)

exactly?

Two more questions which are discussed in this section are:

(i) how large is the variety of functions that can be

presented as the sum (7) provided the standard signal and the

number of divisions M are ®xed?;

(ii) whether the set W�;M forms an orthonormal system.

2.4. The fixed-scale representation in reciprocal space

If there exists the representation (7) for the function f �x�,
then, calculating structure factors for both sides of this iden-

tity, we get the equivalent representation in reciprocal space:

f̂ �h� � PMÿ1

n�0

A�n��̂n�h�

� PMÿ1

n�0

A�n��̂�h� exp�2�i�hn=M��; h 2 Z: �8�

This identity may be written as

f̂ �h� � MÂ�h��̂�h�; h 2 Z; �9�
where Â�h� is an M-periodic function calculated as the inverse

discrete Fourier transform (IDFT) of the wavelet coef®cients

Â�h� � �1=M� PMÿ1

n�0

A�n� exp�2�i�hn=M��; h 2 Z: �10�

It must be emphasized that (9) is equivalent to (7) and all the

questions concerning the existence and uniqueness of the

decomposition (7) may be equally reformulated as ones

concerning the existence and uniqueness of the M-periodic

function Â�h� satisfying (9).

2.5. Necessary and sufficient conditions for the existence of
the fixed-scale representation

2.5.1. Nonvanishing �̂�h��̂�h��̂�h�. Let us suppose ®rst that �̂�h� 6� 0

for all h. Then it follows from (8) that

f̂ �h�=�̂�h� � PMÿ1

n�0

A�n� exp�2�i�hn=M�� �11�

and the necessary and suf®cient condition for the existence

of the representation (7) is that the ratio f̂ �h�=�̂�h� be an

M-periodic function of integer argument h, i.e.

f̂ �h�=�̂�h� � f̂ �h� kM�=�̂�h� kM�; h; k 2 Z: �12�
The wavelet coef®cients may be restored in this case uniquely

from (11) by means of the discrete Fourier transform (DFT)

A�n� � PMÿ1

h�0

� f̂ �h�=M�̂�h�� exp�ÿ2�i�hn=M��;
n � 0; . . . ;M ÿ 1; �13�

and may be imagined as the values of the weighted by 1=M�̂�h�
truncated Fourier synthesis (4) calculated at the proper grid.

2.5.2. Vanishing �̂�h��̂�h�; normalizing function. It was

mentioned above that it is usually supposed for the wavelet

that �̂�h� is localized in both real and reciprocal spaces. So the

condition �̂�h� 6� 0 for all h is too restrictive. We consider now

a more general case when �̂�h� may be equal to zero for some

h. It follows from (9) that for all integers h and k

f̂ �h� kM� � MÂ�h��̂�h� kM� �14�
and two necessary conditions for the existence of the repre-

sentations (9) and (7) are

f̂ �h� � 0 for h such that �̂�h� � 0 �15�
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The wavelet (37) for P � 10.
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and

f̂ �h��̂�h� kM� � f̂ �h� kM��̂�h�; h; k 2 Z: �16�
These conditions are also suf®cient. Let us suppose that the

conditions (15)±(16) are satis®ed. We derive formulae for the

wavelet coef®cients satisfying (7).

We de®ne the normalizing function which plays an essential

role in the wavelet analysis

Ẑ�;M�h� �
P
k2Z

j�̂�h� kM�j2; h 2 Z; �17�

and denote by Z0
�;M the set of its zeros:

Z0
�;M � fh 2 Z : Ẑ�;M�h� � 0g: �18�

It is shown below that the existence and uniqueness of the

®xed-scale decomposition are conditioned by geometrical

properties of the Z0
�;M set rather than the particular values of

�̂�h�.
If h does not belong to Z0

�;M, then the identity (14) deter-

mines the value of Â�h� unambiguously. In fact, in this case,

there exists an integer k� such that �̂�h� k�M� 6� 0 and, to

satisfy (14), Â�h� must be de®ned as

Â�h� � f̂ �h� k�M�=M�̂�h� k�M�: �19�
Owing to condition (16), this de®nition does not depend on

the choice of the particular k� satisfying �̂�h� k�M� 6� 0.

If h belongs to the set Z0
�;M , then �̂�h� kM� � 0 for all k

and, owing to (15), also f̂ �h� kM� � 0 for all k. Thus, the

condition (14) is satis®ed independently of the value of Â�h�.
Let us now de®ne Â0�h� by (19) for h =2 Z0

�;M and equal to zero

for h 2 Z0
�;M. The identity (9) is now valid for all h and thus the

representation (7) exists with wavelet coef®cients equal to

A0�n� � PMÿ1

h�0

Â0�h� exp�ÿ2�i�hn=M��; n � 0; . . . ;M ÿ 1:

�20�
The representation (7) is not unique if the set Z0

�;M is not

empty. If there exist integers h such that Ẑ�;M�h� � 0, then

corresponding Â�h� values are not de®ned uniquely but may

be chosen arbitrarily. Similarly, the wavelet coef®cients

fA�n�gMÿ1
n�0 in representation (7) may be chosen in this case in

different ways. The general expression for admissible wavelet

coef®cients is

A�n� � A0�n� � P
h2Z0

�;M

0�h<M

Ch exp�ÿ2�i�hn=M��;

n � 0; . . . ;M ÿ 1; �21�
where Ch values may be chosen arbitrarily. It is possible to

reduce this ambiguity if the additional minimality restriction is

applied to wavelet coef®cients in (7):

PMÿ1

n�0

jA�n�j2 ) min: �22�

The last condition is equivalent to the condition

PMÿ1

h�0

jÂ�h�j2 ) min; �23�

and thus zero values must be assigned to Â�h� if h belongs to

Z0
�;M.

2.6. Example 1. The decomposition of a finite resolution
Fourier synthesis

Let us consider a Fourier synthesis with ®nite resolution

d � 1=P, i.e. we consider a real periodic function f �x� such that

f̂ �h� � 0 for jhj > P (P an integer). Let us consider the

simplest wavelet, which is de®ned in reciprocal space by

�̂�h� � 1 for jhj � P

0 for jhj > P.

�
�24�

or, equivalently, in real space by

��x� � sin���2P� 1�x�=sin��x�: �25�
The shape of the wavelet is shown in Fig. 1.

If the number, M, of the grid nodes is chosen to be equal to

2P� 1, then the conditions (15)±(16) are satis®ed and the

normalizing function is constant:

Ẑ�;2P�1�h� � 1 for all h: �26�
It now follows from (19) that

Â�h� � �1=�2P� 1�� f̂ �h� for jhj � P; �27�
Â�h� kM� � Â�h� for all h; k 2 Z: �28�

As a result, any one-dimensional Fourier synthesis with

resolution d � 1=P may be represented uniquely as the sum of

shifted wavelets (25):

f �x� �
X2P

n�0

A�n� sin
ÿ
��2P� 1�fxÿ �n=�2P� 1��g�

sinf��xÿ n=�2P� 1��g ; �29�

where the wavelet coef®cients are

A�n� � 1

2P� 1

XP

h�ÿP

f̂ �h� exp ÿ2�ih
n

2P� 1

� �
: �30�

We see that, up to the multiplier 1=�2P� 1�, these coef®cients

are just the values of the d-resolution Fourier synthesis

calculated at the grid points n=�2P� 1�, n � 0; . . . ; 2P.

If the number of wavelets M is chosen to be less than

2P� 1, then the condition (16) is not generally satis®ed. For

example, it follows in this case from (16) that f̂ �M� � f̂ �0�,
which is not usually valid. Thus the exact decomposition (7)

does not exist in this case.

If the number of wavelets M is chosen to be greater than

2P� 1, then the conditions (15)±(16) are satis®ed, but the

normalizing function

Ẑ�;M�h� � 1 for 0 � h � P or M ÿ P � h � M ÿ 1

0 for P� 1 � h � M ÿ Pÿ 1

�
�31�

has zeros. As a result, while the representation of f �x� as a sum

of wavelets (25) still exists, it is now not unique. Fig. 4(a) shows



the number of independent wavelets in the W�;M system for

different numbers M of wavelet grid points.

2.7. Redundant W systems

We call a W system a redundant one if the standard signal

may be expressed as linear combinations of its shifted copies,

i.e. if there exist identitiesPMÿ1

n�0

�n��xÿ n=M� � 0; �32�

where not all �n are equal to zero. It follows from Theorem 1,

proved in Appendix A, that the number of different identities

(23) is M ÿ N0
�;M, where N0

�;M is the number of zeros of the

normalizing function Ẑ�;M�h� in each period M, i.e. the number

of integers h such that 0 � h � M ÿ 1 and Ẑ�;M�h� � 0. The

identities (23) may be written in more explicit form asPMÿ1

n�0

exp�ÿ2�i�hn=M����xÿ n=M� � 0 if Ẑ�;M�h� � 0: �33�

It follows from this consideration that there exist suf®-

ciently large systems W�;M such that most of their members are

just linear combinations of a small number of independent

copies of the standard signal and only the weighted sums of

these independent signals may be represented in the form (7).

Formally, it is possible to exclude N0
�;M copies from the system

and get a linearly independent subsystem. But the centers of

the left signals will no longer ®ll a regular grid. It is sometimes

more convenient to leave a redundant but regular system

W�;M .

It must be noted that, when de®ned by the additional

requirement (22), wavelet coef®cients A0�n� are not inde-

pendent. They satisfy the additional restrictionsPMÿ1

n�0

exp�2�i�hn=M��A0�n� � 0 if Ẑ�;M�h� � 0: �34�

2.8. Example 2. Resolution-shell-restricted syntheses

Consider now the space TP;2P of all Fourier syntheses

calculated in the resolution shell 1=P � d � 1=2P, i.e. consider

all functions f �x� such that

f̂ �h� � 0 for jhj � P and for jhj > 2P; �35�
where P is an integer. Such syntheses constitute corrections

which must be added to `low-resolution' syntheses (with

d1 � 1=P resolution) to `improve the resolution' up to

d2 � 1=2P.

We consider here the simplest standard wavelet de®ned in

reciprocal space as

�̂�h� � 1 for P< jhj � 2P

0 otherwise,

�
�36�

or, equivalently, in the space by

��x� � f2sin�P�x� cos��3P� 1��x�g=sin��x�: �37�
The shape of the wavelet is shown in Fig. 2.

First, let the number of wavelets be chosen to be equal to

the number of nonzero �̂�h� values, i.e. to M � 2P. It is easy to

see that the normalizing function in this case is given by

Ẑ�;2P�h� �
2 for h � 0

0 for h � �P

1 for 1 � h< P and P< h< 2P,

(
�38�

and it follows from (33) that the wavelets are linearly

dependent: P2Pÿ1

n�0

�ÿ1�n��xÿ n=2P� � 0: �39�

The system W�;2P is now not suf®cient to represent all func-

tions from TP;2P. It follows from the condition (16) that a

necessary condition is

f̂ �ÿ2P� � f̂ �ÿ2P� 4P� � f̂ �2P�; �40�
which together with (2) means that f̂ �2P� must be real. Thus,

the functions from TP;2P that do not satisfy this condition

cannot be represented as a sum of W�;2P wavelets.

Let us now increase the number of wavelets by one and

consider the wavelet system W�;2P�1. This system is redundant

and contains more elements than the dimensionality of the

TP;2P space. It is easy to see that in this case

Z�;2P�1�h� � 0 for h � 0

1 for h � 1; . . . ; 2P,

�
�41�

so W�;2P�1 contains 2P linearly independent wavelets and thus

every function from TP;2P may be represented as a weighted

sum of wavelets from W�;2P�1. The linear dependence of the

full W�;2P�1 system takes the formP2P

n�0

��xÿ n=�2P� 1�� � 0 for all x: �42�

The coef®cients of the wavelet decomposition for f �x� may be

calculated in this case as the DFT (of length 2P� 1) of the

values

Â�h� �
0 for h � 0

f̂ �2P� 1ÿ h� for 1 � h � P

f̂ �2P� 1� h� for ÿP � h � ÿ1.

(
�43�

It is interesting to note that if we increase further the number

of wavelets M then, so long as 2P� 2 � M � 4P is satis®ed,

the number of linearly independent wavelets in W�;M is less

than 2P again and not all syntheses from TP;2P may be

expanded into a sum of W�;M wavelets. Only when M exceeds

4P does it then become possible again to represent every

function from TP;2P as a sum of W�;M wavelets. Fig. 4(b) shows

the number of independent wavelets in the W�;M system for

different numbers M of the wavelet grid points. It follows from

this example that the dependence of the variety of functions

that may be represented exactly as sums of the wavelets on the

number of the grid points is not straightforward. The transi-

tion to a ®ner grid may result in a reduced number of linearly

independent functions which may be represented as a wavelet

sum.
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2.9. Orthogonal W systems

If the condition Ẑ�;M�h� 6� 0 is satis®ed for all integer h, the

signals f�n�x�gMÿ1
n�0 are linearly independent but they are not,

generally, orthogonal. The necessary and suf®cient condition

for the W�;M to be an orthogonal system is given by Theorem

2, proved in Appendix A, and is simply that the normalizing

function Ẑ�;M�h� keeps a constant value for all h. It follows

from this that the wavelet (25) in x2.6 generates an ortho-

normal basis in T0;P.

If W�;M is a linearly independent system but the orthogon-

ality condition is not satis®ed, it is always possible (see xA6 for

details) to ®nd another standard signal #�x� such that it is a

combination of elements from W�;M :

#�x� � PMÿ1

n�0

P�n���xÿ n=M�; �44�

but which now generates an orthogonal system

W#;M � f#�xÿ n=M�gMÿ1
n�0 .

Unfortunately, the decay properties of the function #�x�
may be much worse than the ones of the initial signal ��x� (see

Fig. 3, for example). So that, although orthogonal systems are

more convenient in applications, the desire to have space-

localized wavelets forces one to deal with non-orthogonal

wavelet systems as well (Daubeshies et al., 1986).

3. The best approximation of a function by a sum of
fixed-scale signals

The conditions (15)±(16) are not, generally, satis®ed and so

the exact representation of the function as the sum (7) is not

possible. We consider here how the best approximation for

f �x� in the form of the weighted sum

fL�x� �
PMÿ1

n�0

A�n���xÿ n=M� � PMÿ1

n�0

A�n��n�x� �45�

may be found. By the best approximation, we mean the one

that minimizes the residual

R � R1
0

� f �x� ÿ fL�x��2 dx

� P
h2Z

j f̂ �h� ÿ f̂L�h�j2

� PMÿ1

h�0

P
k2Z

j f̂ �h� kM� ÿMÂ�h��̂�h� kM�j2: �46�

The task of the minimization of this residual may be split into

M independent minimization problemsP
k2Z

j f̂ �h� kM� ÿMÂ�h��̂�h� kM�j2 ) min;

h � 0; . . . ;M ÿ 1: �47�
If h =2 Z0

�;M, the last sum is a quadratic function with respect to

Â�h� and its minimum is attained at

Â�h� �
P

k2Z f̂ �h� kM��̂�h� kM�
M
P

k2Z j�̂�h� kM�j2 : �48�

For h 2 Z0
�;M, the sum (47) does not contain Â�h� and any Â�h�

value may be chosen without changing the sum. The wavelet

coef®cients for the best approximation satisfying in addition

the minimal principle (22) may be found as the DFT (20) of

the values Â0�h� de®ned by (48) for h =2 Z0
�;M and as zero for

h 2 Z0
�;M . It is easy to see that the residual (46) may be

calculated in this case by

R � P
h2Z

j f̂ �h�j2 ÿM2
PMÿ1

j�0

Z�;M� j�jÂ� j�j2

� P
h2Z

j f̂ �h�j2 ÿ P
0�j<M

j=2Z0
�;M

P
k2Z

f̂ � j� kM��̂� j� kM�
���� ����2.Z�;M� j�:

�49�
The formulae (48) and (20) perform the chain of calculations

necessary to calculate wavelet coef®cients for the best

approximation of a given function f �x�. To calculate the

approximation fL�x�, the direct summation (45) may be

employed. Nevertheless, a more effective procedure would be

to calculate ®rst the structure factors f̂L�h� by means of

f̂L�h� � MÂ�h��̂�h�; h 2 Z; �50�
and then calculate fL�x� using the fast Fourier transform

algorithm.

Figure 3
(a) The standard wavelet de®ned by �̂�h� � exp�ÿ0:2h2� for jhj � 3 and
�̂�h� � 0 for jhj > 3. (b) The wavelet generating an orthonormal basis in
W�;7.



4. Crystallographic examples

We consider here some test results on the application of the

wavelet transform for crystallographic purposes. The experi-

mentally observed magnitudes for RNAase sa (Sevcik et al.,

1991) were used in these tests. This protein crystallizes in the

space group P212121 with unit-cell dimensions 64.9 � 78.32 �
38.79 AÊ . The phases calculated from the re®ned atomic model

were considered in the tests to be the true phases. When

judging the quality of syntheses calculated with phases

obtained by the multiple isomorphous replacement (MIR)

method, the initially de®ned (unre®ned) MIR phases were

used.

4.1. Wavelet approximation of an electron-density distribu-
tion

The distribution of electron density in the unit cell of a

crystal is customarily approximated by a ®nite Fourier series.

The required information is both the magnitudes and the

phases of the structure factors, although the magnitudes only

may be obtained experimentally. The goal of the ®rst test was

to estimate with what accuracy a ®nite-resolution Fourier

synthesis may be approximated by the sum of a relatively

small number of wavelets. Table 1 presents test results for

different resolution zones. For every resolution zone, the

wavelet grid was chosen in such a way that the number of

independent wavelets did not exceed the number of inde-

pendent structure factors corresponding to this zone. In the

considered case, the wavelet coef®cients are real numbers (in

contrast to the complex structure factors). This means that the

number used to represent the synthesis parameters did not

exceed the number of the measured structure-factor magni-

tudes. The map correlation coef®cient (Lunin & Woolfson,

1993) was used as a measure of synthesis similarity. For

comparison, the map correlation coef®cients between exactly

phased and MIR-phased maps were calculated too. It follows

from Table 1 that it is possible to obtain map quality compa-

tible with the quality of the MIR-phased map even when

reducing the number of wavelets used to the number of

experimentally measured magnitudes. Several sections of the

3 AÊ -resolution exactly phased Fourier synthesis as well as its

wavelet approximation and the MIR-phased synthesis are

shown in Fig. 5.

4.2. Refinement of low-resolution phases

It is known that the isomorphous replacement method often

provides poor low-resolution phases. Nevertheless, low-reso-

lution re¯ections play an essential role in imaging the mole-

cular envelope. The simple wavelet-based ®ltration procedure

permits restoration of the low-resolution component. The

procedure consists in representing the initial synthesis as the

sum of wavelets and calculating an improved image as the

wavelet sum corresponding to the strongest wavelets only.

Table 2 presents the results of the application of this proce-

dure to the MIR-phased syntheses for RNAase sa in different

resolution zones.

It must be noted that, as the wavelet coef®cients may be

considered to some extent as the values of a properly sampled

Fourier synthesis, this ®ltration method is very close to that

suggested by Wang (1985) and the double-step ®ltration

methods (Urzhumtsev et al., 1989) of bounding the molecular

region in noisy syntheses as well as to the low-density elim-

ination method (Shiono & Woolfson, 1992) and some other

density-modi®cation procedures (Podjarny et al., 1996). Table

2 re¯ects that in our case the ®ltration had provided a

signi®cant improvement of the very low resolution phases but

had not affected medium- and high-resolution phases.
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Table 1
Accuracy of wavelet approximation for Fourier syntheses.

Resolution
zone (AÊ )

Number of
re¯ections²

Number of
wavelets²

Correlation with the exactly
phased synthesis (%)

Wavelet
approximation

MIR-phased
synthesis

1±16 39 36 89 23
1±10 137 120 82 62
1±5 977 900 83 58
1±3 4263 4256 83 43

² Numbers of independent re¯ections and wavelets are shown.

Figure 4
The number of independent wavelets in the W�;M system for different
numbers M of wavelet: (a) for the standard wavelet (25), P � 10; (b) for
the standard wavelet (27), P � 10.
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APPENDIX A
Multidimensional crystallographic fixed-scale wavelet
analysis

This section summarizes some results concerning multi-

dimensional analogs of results presented in xx2 and 3 for the

one-dimensional case. The term `crystallographic' is used in

the title to emphasize that we assume that the distribution

f �r� as well as the standard signal ��r� are real periodic

functions. The term `®xed scale' means that we study the

possibility of representing the function as the sum of shifted

copies of the same standard signal ��r� without additional

dilation. We use the term wavelet to underline our interest

in space-localized signals, while formally the decay proper-

ties of ��r� are not used in the proofs below.

A1. Notation

Let V � f�x; . . . ; xm� : 0 � x1 � 1; . . . ; 0 � xm � 1g be a

cube in m-dimensional real space Rm. We consider the real

linear space L2�V� composed of real functions f �r�,
r � �x1; x2; . . . ; xm� 2 Rm such that they are periodic with the

period 1 with respect to any variable and are square integrable

in V. We denote by f̂ �h� the structure factors (Fourier coef®-

cients) corresponding to f �r�, so that

f̂ �h� � R
V

f �r� exp�2�i�h; r�� dVr �51�

and

Table 2
The wavelet-based ®ltration of MIR-phased syntheses.

Resolution
zone (AÊ )

Number of
re¯ections²

Correlation with the exactly
phased synthesis (%)

MIR-phased
synthesis³

Improved
synthesis§

1±16 39 23 88
16±10 98 72 75
10±5 840 57 58
5±3 3286 44 45
1±10 137 62 78
1±5 977 58 63
1±3 4263 47 49

² Numbers of independent re¯ections are shown. ³ Syntheses calculated with the
observed magnitudes and MIR phases were subjected to wavelet decomposition. § The
negative wavelet coef®cients were suppressed.

Figure 5
Fragments of Fourier syntheses (3 AÊ resolution, 4263 independent complex structure factors) for RNAase sa calculated with: (a) the experimental
magnitudes and the phases calculated from the re®ned atomic model; (b) the experimental magnitudes and MIR phases; (c) wavelet approximation
(4256 real independent wavelets); (d) the true atomic positions.



f �r� � P
h2Zm

f̂ �h� exp�ÿ2�i�h; r��; �52�

where h � �h1; . . . ; hm� 2 Zm and Zm is the m-dimensional

space of integers.

Let ��r� be the function that de®nes what we call the stan-

dard signal in real space and �̂�h� be its structure factors. We

de®ne the regular grid for signal centers by the numbers of

divisions along the axes M1; . . . ;Mm and denote by

M � diag�M1; . . . ;Mm� the diagonal matrix with the principal

diagonal formed by M1; . . . ;Mm and all other elements equal

to zero. Obviously,

det�M� � M1M2 . . . Mm: �53�
Let

P�M� � f�h1; . . . ; hm� : 0 � h1 < M1; . . . ; 0 � hm < Mmg
�54�

be a parallelepiped in Zm. We denote by �n�r� � ��rÿMÿ1n�
the standard signal shifted into the grid point

Mÿ1n � �n1=M1; . . . ; nm=Mm� and by

W�;M � f��rÿMÿ1n�gn2P�M�

the full set of signals generated by the standard one and all

permitted shifts. Let L�;M be the linear envelope of W�;M and

fL�r� denotes the orthogonal projection [in the L2�V� sense] of

f �r� onto L�;M. The studied decomposition may be written in

this notation as

f �r� � P
n2P�M�

A�n� ��rÿMÿ1n�: �55�

A2. Discrete Fourier transform

For the set of fA�n�gn2P�M� (complex, in general) values, we

denote by fÂ�h�gh2P�M� their inverse discrete Fourier transform

(IDFT):

Â�h� � �det�M��ÿ1
P

n2P�M�
A�n� exp�2�i�h;Mÿ1n��: �56�

The values fA�n�gn2P�M� may be recovered from (56) by means

of the discrete Fourier transform (DFT):

A�n� � P
h2P�M�

Â�h� exp�ÿ2�i�h;Mÿ1n��: �57�

These formulae are de®ned ®rst for h; n 2 P�M� but they may

be extended to Zm by supposing fA�n�gn2P�M� and fÂ�h�gh2P�M�
to be M1; . . . ;Mm-periodic functions, i.e. the functions with

periods M1; . . . ;Mm in the corresponding directions.

A3. The reciprocal-space representation

The possibility of representing a function f �r� as (55) may

be formulated by an equivalent way in reciprocal space.

Lemma 1. The function f �r� may be represented in the form

(55) with some coef®cients fA�n�gn2P�M� if and only if its

structure factors may be represented in the form

f̂ �h� � det�M�Â�h��̂�h� for all h 2 Zm �58�

with an M1; . . . ;Mm-periodic function Â�h�. The coef®cients

fA�n�gn2P�M� and fÂ�h�gh2P�M� are connected by the discrete

Fourier transform (56)±(57).

Proof. The calculation of the structure factors for both sides of

(55) leads to

f̂ �h� � P
n2P�M�

A�n��̂n�h�

� P
n2P�M�

A�n��̂�h� exp�2�i�h;Mÿ1n��

� �̂�h� P
n2P�M�

A�n� exp�2�i�h;Mÿ1n��

� det�M�Â�h��̂�h�; �59�
which proves Lemma 1.

A4. The uniqueness of the fixed-scale representation

Let the standard signal ��r� and the grid matrix M be given.

We de®ne the normalizing function by

Ẑ�;M�h� �
P

k2Zm

j�̂�h�Mk�j2; �60�

the set of its zeros by

Z0
�;M � fh 2 Zm : Ẑ�;M�h� � 0g �61�

and the number N0
�;M of zeros per unit cell [i.e. the number of

points in the intersection P�M� \ Z0
�;M].

Let us suppose that the representation (55) exists with some

coef®cients fA�n�gn2P�M�, i.e. there exist the representation (58)

with some coef®cients fÂ�h�gh2P�M�. It is easy to see that if

h0 2 Z0
�;M then (58) holds independently of the value of Â�h0�

and so this value may be changed to any other one. This means

that if (55) is valid with fA�n�gn2P�M�, then it is valid with any

signal coef®cients of the form

A0�h� � A�h� for h =2 Z0
�;M

A�h� � Ch for h 2 Z0
�;M,

�
�62�

where the Ch are arbitrary complex numbers. The real-space

analog is that the coef®cients

A0�n� � A�n� � P
h2Z0

�;M

h2P�M�

Ch exp�ÿ2�i�h;Mÿ1n�� �63�

will satisfy (55) as well as fA�n�gn2P�M� do.

Lemma 2. Let the representation (55) exist. Then among all

sets (63) of the signal coef®cients such that (55) is valid, the

minimal sum P
n2P�M�

jA�n�j2 ) min �64�

is attained for wavelet coef®cients satisfying additionally the

condition

Â�h� � 0 for h 2 Z0
�;M: �65�

Proof. The proof follows immediately from
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P
n2P�M�

jA�n�j2 � det�M� P
h2P�M�

jÂ�h�j2: �66�

We suppose below that the condition (64) or (65) is applied

additionally when the representation (55) is not unique.

A5. The dimensionality of the fixed-scale system

Let L�;M be the real linear envelope of

W�;M � f��rÿMÿ1n�gn2P�M�, i.e. the variety of functions that

may be represented as (55) with speci®ed ��r� and M. The

following theorem shows the wide variety of L�;M.

Theorem 1. The dimensionality of the envelope L�;M may be

calculated by means of

dim�L�;M� � det�M� ÿ N0
�;M: �67�

The N0
�;M linear identities connecting shifted signals may be

written as P
n2P�M�

exp�ÿ2�i�h;Mÿ1n����rÿMÿ1n� � 0

for h 2 P�M� \ Z0
�;M: �68�

Proof. The set P�M� contains det�M� ÿ N0
�;M points j such that

Ẑ�;M�h� 6� 0. For every such point, it is possible to construct

the nonzero function in reciprocal space by means of

�̂j�h� � �̂�h� for h � j�Mk; k 2 Zm

0 for other points.

�
�69�

Obviously, the functions corresponding to different j are

linearly independent and every function f̂ �h� that may be

represented in the form (58) is a linear combination of them.

Thus, the det�M� ÿ N0
�;M functions �j�r�, obtained by means of

(52), form the basis in L�;M.

To prove the identity (68), consider the function

Qh�r� �
P

n2P�M�
exp�ÿ2�i�h;Mÿ1n����rÿMÿ1n� �70�

and calculate its structure factors for all j 2 P�M�, k 2 Zm:

Q̂h� j�Mk� � P
n2P�M�

exp�ÿ2�i�h;Mÿ1n���̂n� j�Mk�

� �̂� j�Mk� P
n2P�M�

exp�2�i� jÿ h;Mÿ1n��

� det�M��̂�h�Mk�: �71�
If Ẑ�;M�h� � 0, then �̂�h�Mk� � 0 for all k and thus

Qh�r� � 0.

Remark. It follows from this theorem that the variety of

functions that may be represented exactly as weighted sums of

shifted copies of the same signal ��r� depends both on the

chosen grid of permitted signal shifts and properties of the

signal structure factors �̂�h�. The dependence on the number

of grid points is not straightforward. As follows from Fig. 4(b),

the transition to a ®ner grid may result in a reduced number of

linearly independent functions, which may be represented as a

®xed-scale sum. Concerning the properties of �̂�h�, it must be

said that here the only essential for the dimensionality prop-

erty is the distribution of the zeros of �̂�h� in the reciprocal-

space lattice, but not the particular values of the nonzero

structure factors.

A6. Orthonormal Wf,M systems

Theorem 2. The system W�;M is an orthonormal system if and

only if

Ẑ�;M�h� � �det�M��ÿ1 for all h 2 P�M�: �72�

Proof. Let

��n� � 1 if n � 0

0 if n 6� 0.

�
�73�

The system is an orthonormal one if and only if for every

n;m 2 P�M� the orthonormality condition is satis®ed:

��nÿm� � h�n; �mi
� P

h2Zm

�̂n�h��̂m�h�

� P
h2Zm

j�̂�h�j2 exp�2�i�Mÿ1h; nÿm��

� P
h2P�M�

P
k2Zm

j�̂�h�Mk�j2 exp�2�i�Mÿ1h; nÿm��:

�74�
This is equivalent to the condition

��m� � P
h2P�M�

Ẑ�;M�h� exp�ÿ2�i�h;Mÿ1m��

for all m 2 P�M�: �75�
Applying the IDFT to both sides of the last identity, we obtain

the statement of Theorem 2.

If the system W�;M is composed of linearly independent but

not orthonormal signals, it is possible to construct another

standard signal ��r� such that the system W�;M forms an

orthonormal basis in L�;M. The new orthogonalized standard

signal ��r� may be de®ned by its structure factors

�̂�h� � �̂�h�=�det�M�Ẑ�;M�h��1=2 � det�M�P̂�h��̂�h�; �76�
where

P̂�h� � fdet�M��det�M�Ẑ�;M�h��1=2gÿ1: �77�
It is easy to see that the condition (72) is satis®ed for �̂�h� and

��r� � P
n2P�M�

P�n���rÿMÿ1n�; �78�

where the signal coef®cients P�n� are obtained by the DFT

from P̂�h�. It follows from (78) that

L�;M � L�;M; �79�
so W�;M is an orthonormal basis in L�;M.



A7. The best fixed-scale approximation

For any function f �r� 2 L2�V�, we denote by fL�r� the best

approximation of f �r� by signals from W�;M. If W�;M is an

orthonormal basis, then fL�r� may be calculated by means of

fL�r� �
P

n2P�M�
A�n���rÿMÿ1n�; �80�

where

A�n� � h f ; �ni �
R
V

f �r���rÿMÿ1n� dVr: �81�

The formula (81) may be extended for redundant systems as

follows.

Theorem 3. For any f �r� 2 L2�V�, its projection fL�r� onto L�;M

may be represented as (75) with the coef®cients calculated by

means of

A�n� � h f ; ��ni �
R
V

f �r����rÿMÿ1n� dVr; n 2 P�M�; �82�

where ���r� is the dual signal de®ned in the reciprocal space as

�̂��h� � �̂�h�=�det�M�Ẑ�;M�h�� if Ẑ�;M�h� 6� 0

0 if Ẑ�;M�h� � 0.

(
�83�

When being de®ned as (77), the signal coef®cients satisfy the

additional minimality condition (65).

Proof. It is easy to see that every function that can be repre-

sented in the form (58) with M-periodic Â�h� may be repre-

sented in the form

f̂ �h� � det�M�Â��h��̂��h� �84�
with M-periodic Â��h� and vice versa. Hence, the linear

envelopes of W�;M and W��;M coincide and

B�n� � h f ; ��ni
� h fL; �

�
ni

� P
m2P�M�

A�m�h�m; �
�
ni

� P
m2P�M�

A�m� P
h2Zm

�̂m�h��̂�n�h�

� P
j2P�M�

P
m2P�M�

A�m� exp�2�i�m;Mÿ1j��
( )

� exp�ÿ2�i�n;Mÿ1j�� P
k2Zm

�̂� j�Mk��̂�� j�Mk�

� det�M� P
j2P�M�

Â� j� P
k2Zm

�̂� j�Mk��̂�� j�Mk�
� �

� exp�ÿ2�i�n;Mÿ1j��: �85�
It follows from this and (60) and (83) that

B̂� j� � det�M�Â� j� P
k2Zm

�̂� j�Mk��̂�� j�Mk�

� Â� j� for j =2 Z0
�;M

0 for j 2 Z0
�;M.

(
�86�

Hence the result (82) is true if the condition (65) is satis®ed.

The following theorem permits us to de®ne the signal

coef®cients through the discrete Fourier transform.

Theorem 4. The coef®cients fA�n�gn2P�M� in the representation

(80) that satisfy (65) may be calculated as the DFT of the

values

Â�h� �
�det�M�Ẑ�;M�h��ÿ1

P
k2Zm

f̂ �h�Mk��̂�h�Mk�
if Ẑ�;M�h� 6� 0

0 if Ẑ�;M�h� � 0.

8>><>>:
�87�

Proof. It follows from (82) that

A�n� � h f ; ��ni
� P

h2Zm

f̂ �h��̂��h� exp�ÿ2�i�h;Mÿ1n��

� P
j2P�M�

P
k2Zm

f̂ � j�Mk��̂�� j�Mk�
� �

� exp�ÿ2�i� j;Mÿ1n�� �88�
and

Â� j� � P
k2Zm

f̂ � j�Mk��̂�� j�Mk�: �89�

The formula (86) follows from the de®nition (83).

A8. The symmetry of the signal coefficients

Let ÿ � f�R�; t��gn��1 be a crystallographic space group and

� � f�R�; 0�gm��1 be the corresponding point group of

symmetries. We say that a function f �r� possesses the ÿ
symmetry if for all 0 � � < nÿ 1

f �R�r� t�� � f �r� for all r 2 Rm �90�
or, equivalently,

f̂ �RT
� h� � f̂ �h� exp�ÿ2�i�h; t��� for all h 2 Zm: �91�

Let us suppose that the grid M is consistent with the ÿ
symmetry, i.e. every symmetry operation transforms the grid

points into grid points again. It follows, in particular, from the

consistency that for every � the inner product �Mk; t�� is an

integer and the set of the points RT
� Mk coincides with Mk

when k runs through Zm. The next theorem links the symmetry

of the standard signal with the symmetry of the signal coef®-

cients.

Theorem 5. Let f �r� be a function that possesses ÿ symmetry

and the grid M be consistent with this symmetry.

If the standard signal ��r� possesses ÿ symmetry, then the

signal coef®cients A�n� possess the point-group symmetry, i.e.

A�R�n� � A�n�jmod M for all 0 � � < nÿ 1 and n 2 P�M�:
�92�

If the standard signal ��r� possesses the point-group

symmetry, then the signal coef®cients possess ÿ symmetry, i.e.
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A�R�n�Mt�� � A�n�jmod M

for all 0 � � < nÿ 1 and n 2 P�M�: �93�

Proof. It is enough to show that the values Â�h� possess the

corresponding symmetry. It follows from (60) that if ��r� has ÿ
or � symmetry, then

Ẑ�;M�RT
� h� � P

k2Zm

j�̂�RT
� h�Mk�j2

� P
k2Zm

j�̂�RT
� h� RT

� Mk�j2

� P
k2Zm

j�̂�h�Mk�j2

� Ẑ�;M�h�; �94�
i.e. the normalizing function possesses the point-group

symmetry.

It follows from (87) now that

Â�RT
� h� � �det�M�Ẑ�;M�h��ÿ1

� P
k2Zm

f̂ �RT
� h� RT

� Mk��̂�RT
� h� RT

� Mk�: �95�

If both f �r� and ��r� possess ÿ symmetry, then, owing to (91),

f̂ �RT
� h� RT

� Mk��̂�RT
� h� RT

� Mk� � f̂ �h�Mk��̂�h�Mk�;
�96�

and as the result we get

Â�RT
� h� � Â�h�; �97�

which means that the signal coef®cients A�n� have the point-

group symmetry.

If ��r� possess the point-group symmetry, then

f̂ �RT
� h� RT

� Mk��̂�RT
� h� RT

� Mk�
� f̂ �h�Mk��̂�h�Mk� exp�ÿ2�i�h�Mk; t���
� f̂ �h�Mk��̂�h�Mk� exp�ÿ2�i�h; t��� �98�

and so

Â�RT
� h� � Â�h� exp�ÿ2�i�h; t���; �99�

which means that the signal coef®cients A�n� have ÿ
symmetry.
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The work was supported by grant No. RFBR 97-04-48319.

References

Agarwal, R. C. & Isaacs, N. W. (1977). Proc. Natl Acad. Sci. USA, 74,
2835±2839.

Chu, C. K. (1992). An Introduction to Wavelets. New York: Academic
Press.

Combes, J. M., Grossmann, A. & Tchamitchian, P. (1988). Editors.
Wavelets. Berlin: Springer-Verlag.

Daubechies, I. (1993). Editor. Different Perspectives on Wavelets.
Proceedings of Symposia in Applied Mathematics, Vol. 47. New
York: American Mathematical Society.

Daubeshies, I., Grossman, A. & Meyer, Y. (1986). J. Math. Phys. 27,
1271±1283.

Ferrer, J.-L., Roth, M. & Antoniadis, A. (1998). Acta Cryst. D54,
184±199.

Lamzin, V. S. & Wilson, K.S. (1993). Acta Cryst. D49, 129±147.
Lunin, V. Y., Lunina, N. L., Petrova, T. E., Urzhumtsev, A. G. &

Podjarny, A. D. (1998). Acta Cryst. D54, 726±734.
Lunin, V. Y., Lunina, N. L., Petrova, T. E., Vernoslova, E. A.,

Urzhumtsev, A. G. & Podjarny, A. D. (1995). Acta Cryst. D51,
896±903.

Lunin, V. Yu. & Urzhumtsev, A. G. (1984). Acta Cryst. A40, 269±277.
Lunin, V. Yu., Urzhumtsev, A. G., Vernoslova, E. A., Chirgadze,

Yu. N., Nevskaya, N. A. & Fomenkova, N. P. (1985). Acta Cryst.
A41, 166±171.

Lunin, V. Yu. & Woolfson, M. M. (1993). Acta Cryst. D49, 530±533.
Main, P. (1996). Microsymposium 02.06, XVII IUCr Congress,

Seattle, WA, USA, 8±17 August 1996.
Podjarny, A. D., Rees, B. & Urzhumtsev, A. G. (1996). Methods Mol.

Biol. 56, 205±226.
Pouligny, B., Gabriel, G., Muzy, J. F., Arneodo, A. & Argoul, F. (1991).

J. Appl. Cryst. 24, 526±530.
Sevcik, J., Dodson, E. J. & Dodson, G. G. (1991). Acta Cryst. B47,

240±253.
Shiono, M. & Woolfson, M. M. (1992). Acta Cryst. A48, 451±456.
Somoza, J. R., SzoÈ ke, H. & SzoÈ ke, A. (1998). Direct Methods for

Solving Macromolecular Structures, edited by S. Fortier. NATO
ASI Series, Vol. 507, pp. 499±502.

Urzhumtsev, A. G. (1997). Acta Cryst. D53, 540±543.
Urzhumtsev, A. G., Lunin, V. Yu. & Luzyanina, T. B. (1989). Acta

Cryst. A45, 34±39.
Vellieux, F. M. D. (1998). Direct Methods for Solving Macromolecular

Structures, edited by S. Fortier. NATO ASI Series, Vol. 507, pp.
503±512.

Wang, B. C. (1985). Methods Enzymol. 115, 90±112.


	mk1

