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Abstract—We discuss the potentiality of the maximal likelihood approach to selection of a prior distribu-
tion for the coordinates of atoms of macromolecular structures in solving the phase problem of X-ray analy-
sis. Different approaches in selection of the likelihood function are considered. It is shown that the
maximum likelihood in some cases fails to provide a satisfactory prior distribution, and a comprehensive
study of the limits of applicability is necessary in every case.

Key words: structures of biopolymers, phase problem, probabilistic approach

INTRODUCTION

One of the key problems of X-ray crystallogra-
phy is the phasing problem, or the problem of assess-
ing the phases of complex coefficients (structural fac-
tors) the of Fourier expansion of electron distribution
in the studied crystal. Absolute values of these coeffi-
cients are measured in the experiment. In the statisti-
cal approach, practically, the phasing problem of X-ray
crystallography is assessed in three stages. At the first
stage, an ensemble of potential structures is intro-
duced, and probabilities are assigned to these struc-
tures. The following model is usually used therewith:
the structure under study is considered as a series of
independent tests; each test consists in putting any
atom of the structure, at random and independently, in
an elementary cell with some prior probability distri-
bution. At the second stage, the joint distribution of
the structural factors is obtained, basing on which
conditional distributions for phase invariants are cal-
culated under the assumption that the absolute values
of structural factors take their experimental values. At
this stage, a priori information concerning the struc-
tures is transformed into the information on phase in-
variant distributions. The third stage consists in evalu-
ation of the phase invariants of the structure with the
help of the distribution obtained at the second stage.

The choice of a prior for atomic coordinates is
essential in this technique. The uniform prior, which
is successfully employed for the low-molecular struc-
tures, is in poor agreement with the experimental data
on macromolecular structures for low and medium
resolution. In recent years, the maximum likelihood
principle was extensively used in choosing the prior
that agrees best with the experimental data [1, 2, 5].
To every prior, a value called likelihood can be as-
signed, defined as the probability, or, more rigor-
ously, the probability density, of the event that the ab-
solute values of the structural factors are equal to their
observed experimental values:

L(q(r))=P{|F‘.|=[F,.°°5[,i=l,M}. (D

According to this principle, as a prior for atomic
coordinates of the studied structure one should choose
the distribution g(r) for which the likelihood attains
its maximum. However, a more detailed investigation
indicates that this principle should be used with cau-
tion and only after a careful study of its applicability
limits. Below, we consider three examples, in which
the results provided by this principle are correct only
within certain limits.
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CALCULATION OF THE LIKELIHOOD
FUNCTION

Mathematically, the problem of calculation of
the prior that commesponds to the maximal likelihood is
quite complicated. TF there were an analytical expres-
sion for a joint distribution of absolute values and
phases of structural factors, then it would be possible
to calculate the likelihood by integrating the joint dis-
tribution over phases with the absolute values given.
However, it is very difficult to ohtain an exact expres-
sion for the distribution of absolute values and phases.
An asymplotic Edgeworth series provides sufficient
sccuracy only for small deviations of unitary struc-
tural factors from their expected values: ALM - N5
[3]. For larger deviatuons AL ~ 1, there is an approxi-
mate expression for the joint distribution of structural
factors, which was obtained by Bricogne using the
saddle-point method [4]. However, his estimation 1s
difficult to employ in practice, since the final expres-
sion contains an implicit function that is the solution
of a large sel of nonlinear equations.

Mathematical problems alse arise in inlegrating
the distribution cbtained over phases, for which sub-
stuntial approximations are necessary, For instance,
many authors wsed “diagonal approximation™ [1], in
which the nondiagonal elements of a covariance ma-
trix are put equal to zero. This implies that structural
factors are independent varables, an assumption that
results in the loss of a substantial part of phase infor-
mation.

An alternative approach to likelihood calculation
i5 0o proceed from the ordinary likelhihood function (1)
to the so-called generalized likelihood, which is cal-
culated in computer simulations [3]. By definition, the
generalized likelihood 15 the probability of the abso-
lute values of structural factors being sufficiently
cloze 1o the experimental absolute values:

Ligin), @) =P{c({F=}{F*=})za}. @

where @ 15 the approximation paramefer, which 1s
chosen in the particular study; C is a certain measure
of distance between two sets of structural factors. In
computer simulations, a large number of model struc-
tures are generated, with atomic coordinates distributed
over the elementary cell according w the given prior
gir), whersupon the probabiliny (21 is approximately
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calculated as the ratio of the number of models with ©
greater than the given level to the total number of
models generated. It should be noted that this tech-
nique demands substantial computing power and also
requires an additional study of the dependence of the
outcome on the model paramerers.

Below we jllustrate these methods of likelihoed
calculation with examples.

EVALUATION OF EXPECTED PHASE ERRORS
USING AN APPROXIMATE ATOM MODEL
OF THE STRUCTURE

The phases of structural factors ar different
stages of determining the structure are often calcu-
lated for an approximate atomic medel. In so doing, it
15 necessary to estimate the expected phase errors. To
this end, several authors of the present paper have em-
ploved a probabilistic mode] [6], in which the coordi-
nates of every atom were distnbuted with the same
average 1™, and the mean error was unknown but
equal for each atom [6]. For example, the error disin-
bution can be Gaussian, and in this case by choosing
the mean error one simultaneously defines the prior
for the atomic coordinates. It has been shown maihe-
matically that all unknown errors in the model as well
as the scale coefficients for reflexes belonging to the
same resolution Zone comply with a two-parameter
distribution. The unknown parameters were estimated
using the maximum likelihood ponciple. The joint
distribution of the absolute values of structural faciors
wis obtained in the diagenal approximanon [1, 2).
The algorithm was tested onm known stractures; in
these tests the expected phase errors were calculated
using the estimated parameter values and compared
with the observed phase errors. The calculared aver-
age phase errors were found 1o be close o their cor-
rect values, However, after the model was refined, the
calculated estimates were significantly below the cor-
rect values (Fig. 1), It should be noted that the dis-
agreement betwesn calculated and observed errors
can be reduced by selecting a set of reflexes and sav-
ing them from refinement [7]; the likelihood in this
case is caleulated taking inte account only the se-
lected reflexes,
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Fig. 1. Zone average of the prediceed and the observed
phase erroes (o the actnidine model, The predicted {dask
triangles) and observed (solid line) phase errors for the
micdel wilh the average abiolute erros of Momie coordi-
nasies equal io 0.7% A_ The predicied (lighs criangles) ans
the ohserved (doted ling) phaose errors for the same
el afler refinement,

GENERALIZED LIKELIHOOD FOR REGION
MASK SELECTION FROM SEVERAL
ALTERNATIVES

A phasing problem, when it is solved using
FaM technique [9] or other ab initic methods of
phase estimation, requires selection of a single region
mask from several alternative region masks calculated
on different phase sets [3]. A prior distribution of
atomic coordinates comresponds 1o each region mask,
this distributien is constant within this mask and
equal to zero beyond it. Therefore, the problem of se-
lection of a mask from several alternatives is equal to
the problem of prior selection from several alternative
distnbutions.

For each potential prior, the generalized likeli-
hood {defined above) was caleulated in computer sim-
ulations. We expected that the best region mask
would correspond to the maximal number of FAM
variants with a high correlation of magnitudes, ie.. to
the maximal value of the generalized likelihood. This
was confirmed in tests with the experimental data ob-
tained for RNase SA with 16 A resolution using the
masks isolating 60% of the elementary cell volume
{Fig. 2a), which is approximately equal to the mole-
cule volume. However, when the masks built for the
same phase sets but 1solating 30% of the elementary
cell volume were compared, the maximal value of the
general likelihood did not correspond to the best mask
{Fig. 2b).
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Fig. 2. The dedependence of generalized likelibood val-
uves caleulated for 100 awoms penerased according to dif-
ferent region masks; (a) che masks isolate 6% of the &le-
mentary cell volume; (b} the masks psalaie 305 of the 2l-
ementary cell volume. Differem curves comespond o
olifferent values of thse mask guality, the average coelTi.
cient of phase carrelation (specifed ot che symbids) dus-
ing gereration af atons controlied by the mask,

APPROXIMATION OF THE PRIOR WITH
THE LIKELIHOOD GRADIENT

For low resolutions, the prior map can be di-
rectly uwsed to determine the supposed regions with
high and low atem concentration. Since calculation of
a prior distribution corresponding to the global mini-
mum of the maximum likelthood function is a comph-
cated problem, we have tried to start from an easier
problem: to find a distribution g(r) for which the like-
lihpod value obtained would be greater than the value
obtained for the uniform distribution. Such a distribu-
tion can be obtained if one moves in the prior distri-
bution space following the likelihood gradient, start-
ing from the point comresponding to the uniform dis-
tribution. Thus, the desired distribution is sought in
the form:
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Fig. 3. Maps of the likelihaod gradient. The black contaur cornes pards 1o the lines of the level isolating (a) 25% af Lhe poinis af
he elementary cell with maximal values of the likelihaod gradient function, and (b) 5% of the points of the clementary cell with
minimal values of e likelihond gradient fuscuon. The soms of the model ane shoan in grey.

ol .
g iri=g,(r1+k— (3)

dipl )

where A should be sufficiemly small. The function
iir) can be calevlated via its Fourier coefficients. Lhe
likelihood gradient can be expressed through the de-
rivatives of the likelihood with respect 1o the Fourier
coefficients of the pnor:

18 dl.
- =¥ ——gxpi 20 h,r {4}
Gl ) E’ di, AP )

It is necessary to remark that the gradient of the
likelihood function is not zero only when the origin of
coordinates and the enantiomorph are fixed. One can

hawve

gasily see from (3) that functions g,(r) and

coinciding maxima and minima. Therefore, in order
to find the regions of the elementary cell with suppos-

al.,
. We have demonstrated that, for the case when

iy

the deflections of unitary structural factors from their
expected values are on the order of AL - N, an as-
ympiotic estimate can be obtained that does not in-
clude implicit functions in the expressions for joint
distributions of structural factors. It should be stressed
that when the order of deflection of the unitary struc-
tural factors for their expecied values comply with the
limits above, the large enough values of structural
factors are not excluded from consideration

In order 1o give insight intoe the equations ob

di
tamned, we present the expression for T in the case
L]
when the phase of the reflex h is an absclute serm-
invariant:

2 J’Ml‘h], hesd

edly high and low alom concentration, it is sufficient 3G, |EM(h)+wihh)(E{ -3), hes, !
to build the map of the gradient of the likelihood
function, which can be calculated with equation (4. where
In this study we have pud special attention 1o .H[h‘1=£m[k.hHE£ -1y,
ohtaining the analytical expressions for the function keh
» {numt-:rur's'u:n:h puir[l.l.,u}.l:hal“,f]-HRfkfll='E|} &)
k hi= — ———, {
2{ number of such |, that R] k = k H{number of such v, that R h=h}
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where E, is the normalized structural factor; R, is the
symmetry matrix.

In Fig. 3 we show the maps of the likelihood
gradient calculated by equations (5)—(6) taking into
account 24 central symmetrical reflexes, which are
the semi-invariants of space group 1432, and using the
positions of C, atoms in the known complex
AspRS—RNA [10, 11]. Figure 3 shows that the func-
tion thus calculated has its maxima in the regions
where atoms are found, and has its minima in the re-
gions where atoms are almost absent. However, addi-
tional maxima of the likelihood function gradient are
found also in the regions of the elementary cell where
the atom concentration is insignificant.

CONCLUSIONS

The three examples considered demonstrate that
the acceptance of the maximum likelihood principle
for selecting a prior distribution of atomic coordinates
is justified. In many cases, with this principle one can
obtain the correct result. However, it is necessary to
take into account that, as with any statistical principle,
the maximum likelihood principle does not guarantee
a correct result in every specific case, as revealed in
the tests above. Addressing any practical problem, it
is necessary to study in detail the applicability limits
of this principle.
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