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Summary . .

This lesue deals with a new approach to solving of- the phase
problem 1in protein orystallography. It has "been recently
revealafl. that hiatograms (spectra of frequencies of different
electron dnnaity' values), corresponding . to protein
eleciron-density distributions have a specific shape. The shape
is sensidle to errors 'in structure fector phasea and can be an
indicator of correctness of phass determination. Thia ypreprini
contains a review of fthe investigations commected with
elaboration and application of the new source of information on
proteina conducted at Research Computing Centre, USSR Académy of
Sciences, (Pushchino, Moscow Region, 142292, USSR).
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1. INTRODUCTION

X—Ray structure analysis (XSA) is considered attentively by
many researchers comcerned with the structure of matter at the
atomic level, because it is the main method, that allows to
determine object's structure at the atomic resolution. This
method allows to determine the three-dimension location of all
the atoms of the matter and thus to answer the questions of the
molecular structure and its functioning, formulated in terms of’
geometrical characteristics (distances between atoms, berd
lengths, bond or dihedral angles) or characteristica{\ponnpctedi
with geometry (surface charge distribution;- "admissible”
surfaces) and so on.

The principal  feature of the X-ray experiment . is
incompleteness of the data. The experiment allows to measure only
the values Fs of modules of complex coefficients (the siructure
factors) in decomposition of the electron density distribution
into Fourier series

19, -2Ti(e.r) ‘
Y Fge % e 8 (1)
8

p(r) =
' cell

The determination of the phases @y of the structure factors
constitutes the central problem of .XSA, namely the "phase
k problem". Success of the whole work on structure determination is
essentially conditioned by the accuracy of solving the phase
problem.

Since X-ray experiment do not solve the phase problem
directly, additional information on the object is required. At
present there exist two kinds of methods, widely used in practice
for solving the phase problem. "The direct. methods of phase
determination" are used to determine the structure of small
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molecules (100-150 atoms). The main additional information for
these methods is "atomicity" of the object. When it goes to the
biological molecules,' , a method of isomorphbus replacement can be
applied. This method uses as an additional information on the
object (native protein in our case) dat4d of additional X-ray
experiments with close substances. (isomorphous derivatives)
differing from the native protein by local additions ("heavy"
atoms) not distorting native structure. In this case all the
gravity of the phase problem solving removes into the field of
biochemistry. Obtaining of,.isomorphous derivatives is a serious
problem that not always can be solved. Even in cases, when
derivatives are successfully obtained, isomorphism can take place
only approximately since attached heavy atoms can make some
distortions in native structure. It leads to errors when
calculating phases, and as a result, to complicb.tion of the
problem of interpretation of the electiron density distribution in
structure terms (up to full . uninterpretability). Analogous
problems arise when only one isomorphous derivative is obtained
‘(for unambiguous solution of the phase problem at least two
" derivatives are required).

All these problems have recently stimulated considerable
ef m&d\at gsearching for additional sources of information -
on macrorﬁolecuﬁ\ structure as well as methods of this
information treating to solve two problems: )

i) getting a more interpretable synthesis (correction of
phases, determined with errors, and, ppssibly, determination of
phase values that were not determined before); o

ii) solution of the phase problem for macromolecules in cases,
when heavy atom derivatives are absent. S

It has been recently revealed (Lunin,1986; ILunin 1988;
Luzzati, Mariani & Delacroix,1988; Harrison,1988; Zhang &
Main,1990), that histograms (spectra of frequencies of different
electron density values), corresponding to protein
electron-density distributions have a specific shape. The shape
is sepsible to errors in structure factor phases and can be an
indicator of correctness of phase determination. This preprint
contains a review of the investigations connected with
elaboration and application of the new source of information on
proteins conducted at Research Computing Centre, USSR Academy of
Sciencés, (Pushchino, Moscow Region, 142292, USSR).

The presented results were obtained by Iunin V.Yu.,
Urzhumtsev A.G., Vernoslova E.A., Skovoroda T.P., Vernoslov S.E.,
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El'kin Yu.E. The author is grateful to 0.B.Ivanova for her help.
in preparing the manuscript.

2. HISTOGRAM OF THE FINITE RESOLUTION ELECTRON-DENSITY
SYNTHESIS IS A NEW SOURCE OF INFORMATION ON THE PROTEIN CRYSTALS.

Trying to specify the phases of structure factors, various
researchers made a 1ot‘of attempts to use some resﬁrictions on
the range of possible values of the electron density distribution-
function as an additional a-priori information on the object
under analysis. Examples of such restrictions are: :

i) p(r) = O ( left side restriction on the range of
possible values);

ii) Prin® p(r) = Prax (both sides restriction on the range
of possible values); N

iii) p(r) = { Oor 1 } (finite set of possible values )
and 8o on.

2.1 Histogram, corresponding to the electron density
distribution. .

The base of the below expounded methods is an attempt to,
take into account not only restrictions on.the values.. whteh
p(r) may teke in the unit cell, butwgl_go/the freque@e,f;,,each
possible value. The most direct practical approach to present
this information is as follows. Let us introduce a uniform grid
in the unit cell V , and let (pd}§=1_ be the set of values
calculated at the grid points. Let us subdivide the imterval
(pmin.pmx) into K equal parts (bins) and determine how
frequent are occurrénces of p 3 in each of the bins

"Uk--nk/N , k=1,...,K .

Here n, . is the number of the grid points with values Py

belonging to the X-th bin, that is the number of such p g
that

pm— pmin : pmax_ pm:i.n
Putn® 3 =) = 5 Py # Pyt I S
N is the total number of the gridA points. We call the set
(distribution) of frequencies v )E » the histogram,

k' k=1
corresponding to the function p(r).

Sometimes it's more convenient to deal with the normalized
histogram



ve=n / (AN) , k=1,....K, (2)

where Ak denotes the length of k-th ©bin. In this case the
probability of ‘p-value to belong to k-th bin (for a random
choice  of the grid point in the unit-cell V ) is vak.
Frequencies, calculated from (2) depend strictly speaking
not only on p(r) , but also on the grid and on the way of bins
proposing. To get rid of this dependence one can introduce
measure on the range of the analyzing function more predisely.

Let us define.the cumulative function for p(r)
1
N(t) = T;T'mes {r:p(r) st}
and the cumulative function density:

d 1 d
V() = — N(t) = — — mes{r : p(r)st }
dt V] dt

(Here and further {r: 4} is the part of the unit cell occupied
with points r , satisfying condition 4 ; mes S 1is the volume
of the set S, |V| = mes V is the volume of the unit cell V }.
Functions N(t) and (%) depend only on p(r) but not on the
choice of the grid and division of the real axis into bins. The
value  V(t)At (when At is small enough) is a probability, that

( Yol choice of the point in the region V ) the value
p(r) 7velongs to The interval (p,p+At) . It's easy to see, that
normalized frequencies Ve » calculated from the formula ( 2 )
are approximate values of () at the points tk ,
corresponding to the middles of bins

v(t) Ak»éTmNvak

We shall further use a term "histogram" to denote both the
sets .of frequencies {'vk}L1 or {ﬁk}§=1 , and the cumulative
function density ¥(t) . Use of (i) 1is more convenient when
considering theoretical questions while in practice it's more

convenient to operate with frequencies.

2.2 Histogram of a finite-resolution Fourier synthesis.
Pig.1 shows the typical histogram, corresponding to the
middle-resolution electron density synthesis ( 4& in our case)
for a protein. Its shape is typical for histograms corresponding
" to the electron density syntheses for the proteins. .
The fundamental histogram property, determining its further
applicétiqn is its sensibility to errors in structure Iaptor
phases and lack  of some structure factors when calculating
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Fig.1 Histogram of
the 4A-resolution v
electron - density
synthesis for
subtilisin

4]
4 A
subtilisin

synthesis (Iunin,1986; ILunin,1988). Fig.2 shows how 1s the
histogram shape chahged under the influence of two factors:
replacement of the exact phase values of siructure factors by
random ones and elimination of about 18% of reflections near axis
1 of the. reciprocal space from the synthesis. Due to its
‘sensitivity to errors, histogrem can be expected to serve as an
indicator of correctness of phase determiging.

Pig.2 Influehce of the . Vi)
errors in structure fac- '
tors on the histogram of
the Fourier synthesis

exact modules
and phases;

—————— exact modules,
random phases;

—+—+-  18% of reflecti- )

. ons are elimina- f - i
ted from the . ’
synthesis. -

In practice we deal with finite-resolution syntheses. (We
call the sum ( 1 ) the synthesis at a resolution 4 in if the
sum is composed of all the items, corresponding to the grid
points s of the reciprocal space with '[s]f§‘l/dm;h). Fig.3 shows
how does the change of the the PFourier synthesis resolution
influence the histogram shape. This picture results - in two
important consequences:

i) when speaking of the histogram of the Pourier synthesis
we should realize clearly synthesis of what resolution do we
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mean;

ii) the full possible histogram information on the electron
density distribution is the set of histograms, corresponding to
the syntheses of different resolutions.

V)
. cytochrome b5 - .
Fig.3. Dependence  of

o2 R . the Fourier synthesis
: ° histogram on synthesis
- 4 A resolution. ‘

eitt— 6 &

More detailed analysis ©reveals also the histogram
-gensitivity to the average value of atoms' temperature factors.
(Lunin & Skovoroda,1991).

3. HISTOGRAM PREDICTION FOR PROTEINS WITH UNKNOWN SPATIAL
STRUCTURES .

3.1 Empirical Histogram Model.
Analysis of histograms corresponding to syntheses of one and
the same resolution for different proteins makes it clear (fig 4)

v
4;: . staphylococcal
nuclease Fig.4. Histograms of
' Fourier syntheses for .
_ different proteins
chymotrypsinogen )
1. carbonic
T anhydrase
'.




that these histograms, though posses similar shapes, don't
coincide closely. Thus the histogram, corresponding to a protein.
with known structure can not be directly‘used as tpe standard
histogram for the other proteins.’ ’

v(t)

staphylococcal
44 nuclease .
Fig.5. Normalized
histograms of Fourier o
syntheses for the same chymotrypsinogen
proteins as at fig.4. e
carbonic

anhydrase

However, the graphs coincide better _if we furn to the
"normalized volumes", by applying additional renoimetizatiomto
the histograms :

V=V V| /P k=1,...,K,

ooo ’

v(t) = v(8) |V] / Py,

‘Here F_ . 1is the number of electrons in the unit cell, (V| is
the unit cell volume. (For small At the value v(t) At 1is the
volume of the part of the unit cell (due one electron) where the
values of p(r) lie in the interval (t,t+At) . As fig.5 shows,
the normalized histograms have the similar plots, corresponding
to middle, large and smallest values of p . (It should be
stressed, that since we analyze the finite resolution syntheses,
we inevitably have points in the unit cell with negative values
of p(r) and, moreover, these points are concentrated in the
molecular region, in general (Urzhumisev, Lunin & Luzyanina,
1989)).

Fig.5 makes it possible to suggest a hypothesis that for
such p-values, which can be found in the molecular region only,
"normalized volume" is the same for all the proteins and can be
described by standard (the same for all the proteins)
distribution v°(t) . The distribution vo(t) varies with
resolution of the synthesis. One can't unambiguously determine
the values of vo(t) for t , close to zero directly from the
graphs in fig.5. Such the values are met with not only in the
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molecular region. However, more precise analysis of the graphs
v(t) for different proteins allows to determine values Bf’the
standard distribution vo(t) for all t .

' Analysis of functions v(%) , corresponding to the crystals
of different proteins, allows to notice that the central peak
heights at v(t) graphs are direetly proportional to
corresponding WI/FOOO values, that is the "freer'f the protein
molecules are placed in the crystal cell, the higher peak is.
This observation allows to suggest a hypothesis that the volume
of the region in intermolecular space in which values of p(r)
belong to an interval (t,t+At)-, is directly proportional to the
whole volume of the intermolecular space. )

Above formulated hypotheses result in~ the following
empirical model of the normalized values distribution

v(p) = vO(p) + ( |VI/Ryoom | vO(x) ax ) o%(p), (3)

or, that's the same, in the histogram model
e ‘

TP F P
'ﬁ(p)=%%v°(p)+(1——%fv°(x)dx)q°(p). (4)

Here v°(p) is the same for all the proteins function,
describing distribution of p(r)-values inside the molecule
region; and q°(p) is the same for all the proteins function,
describing distribution of p(r)-values in the intermolecular
region.

The discrete analogs of the formulae (3)~(4) are the
expressions :

’ K
- C 0 0
vie= vp + (V] /Py o za=1v’ Ay qp (5)
F F K .
000 .0 000 ) 0
po= =22 yo o4 (1 - 290 veA) q . (6)
k IVI k IV' 3=1 J 3 k
Here functions vP(t) and q°(t) are replaced by the sets of
their values vz'= V°(tk) ~and - qf: = q°(tk) at the bin's
middles by, -

3.2 The calculation of the standard distributions. .

To determine the standard distributions v°(t) and q°(t)
a set of proteins ("base protein set") with known atomic
structures was selected from among Protein Data Bank (table 1).
Atomic models were used to calculate protein's structure factors.
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Table 1.

. v accuracy of histogram
protein - prediction

—‘4A I d =104

base protein set .
Carbonic anhydrase 0.022 0.098

Chymotrypsinogen . 0.033 0.051

Cytochrome b5 0.053 0.106

HIPIP : | 0.028 0.135

B-J Protein 0.023 ) 0.074

Insulin . 0.024 0.408

Lysozyme = 0.025 0.064

Mioglobin 0.056 0.039

Neurotoxin 0.088 0.212

Ovomucoid 0.030 0.145

Phospholipase ) 0.019 - 0.091
. Plastocyanin 0.032 0.090

Prealbumin 0.020 0.063
* Proteinase A 0.023" 0.130

Ribonuclease . 0.038 0.162

Staphilococcal nuclease 0.044 0.066

broteins, not getting into the set

Ubiquitin | 0.045

Crambin ) 0.044

Avian pancreatic polypeptlde - 0.051

Rubredoxine B 0.076

Concanavalin 0.064

b4
= 1 v -vS |4, v - values of frequences for -
Qh E=1 k k k 1; exact synthesis;

v, — values of frequences cal-
culated from (6).

Then electron density syntheses and corresponding exact
histograms were calculated. Standard distributions (vl‘:’)ﬁ=1 and
{q]‘:}ﬁ=1 were determined in accordance with the requirement of
the best agreement between theoretical histograms, determined
from (6) and exact histograms for the base protems More
prec1se1y, we minimized tr;e value

IR g (dp(d) (1) _ L(3)y2

) N FoooAk Vle T V%) —=> min 7
TR ¥) =

J=1 k=1 k

N

under additional normalizing conditions
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K : K
(o] (o]
veA =0, E QA =1, e
21{=1 k' k . =1 k k i (8)
K K
o = [¢] _ .
E =1tkvk Ak =1 , E =1tqu Ak =0 .7

The Lagrange multipliers method was used for these 'purposes.
(Here Fég(’) , and |¥ ‘Y- are the number of electrons and the -
volume of the unit cell, N®)  is the number of the grid points,
{v¢3)} . are theoretical values, calculated from the formula (5),
{vEJy}E=1 are exact vglues for j~th basic protein. Weight
multipliers in (7). represent passing over from values v, to the
numbers n, of the grid points, whose p-values belong to the
‘k-th bin. - ’

Fig.6 shows the graphs of the standard distributions
vO(4) and q°(t) ., corresponding to the resolution 4A.

§tandafd
(t) and

4R

' Fig.6.
in ) dastributions v
) - ' t qQ ().
\ N LR
Ay vt -~

T-....;.. ) o

VW = (F, /v v+ ()

3.3 The histogram prediction.

After the standard distributions {(vQ}¥_, and {a})f_, (for

‘the given resolution dmin ) have been determined one can predict
a histogram (for the same resolution Qin ) for. arbitrary
protein if parameters V and Fooo of the protein are known.

Formulae (4) or (6) do this prediction.

Fig.7. shows exact and *theoretical"™ (calculated from
(vg):=1 and {qﬁ}§=1 ) histograms for protein mioglobin (the
worst agreement among basic proteins). PFig.8 shows actual and
predicted histograms for protein concanavalin (not included into
the basic set). Table.1 points out the quality of the agreement
between the "theoretical" and the exact histograms at resolutions

44 and 10A.
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Fig.7. The exact ( )
and - predicted (-s——e—~)
histograms of the Fourier
synthesis for mioglobin
at the 44 resolution.

v 4R

miogtobin

true histogram

———————
predicted
histogram

Fig.8. The exact ( )
and predicted (—e—=e~)

“histograms of the Fourier
synthesis for concanavalin
( not included into the
base protein set) at the
44 resolution.

4R

Concanavalin

true histogram
predicted -
histogram

3.4 The histogram prediction for low-resolution syntheses.

The above procedure of histogram prediction gives an
acceptable for practice accuracy and appears to be available when
dealing with the middle-resolution and high-resolution syntheses.
However, when passing to the low-resolution syntheses, accuracy
of the prediction decrease. This fact compelled us (Iunin,1988)
(when working with the low-resolution synthesis) to use some
other procedure, based on the application of either the atomic
model of a homologous protein or the model, composed of the parts
of different protein models and similar to the model of the
analyzing protein in dimensions and outlines (such an information
can be received from electron microscopy, for example). In this
case the problem of histogram prediction can be solved in two
stages:

1) "placing" ‘of the homologous atomic < model without

13



overlapping in the protein unit cell;

ii) calculation of the histogram for this hypothetical model
(that is calculation of the structure factors from the atomic
model, then, calculation of the Fourier synthesis at the
necessary resolution and the histogram for 1it). }

Tests have shown that histograms, calculated in such a way
depend weakly on the possible changes of the model packing and
can be used in practice.

4. USE OF THE HISTOGRAMS FOR STRUCTURE FACTORS RETRIEVAL.

To obtain an accurate image of molecule at the
finite-resolution synthesis (1), we should use exact values of
all the structure factors of desired resolution. In practice
there is always something that prevents this, either due to
unknown phases or even to unknown phases and modules for some of
the structure factors. An impression can arise that exclusion of
some hundreds (or even tens) of items from the sum (1) can't
distort the synthesis (taking into account that the total number

items in (1) tends to thousands and tens of thousand€). But
it's not“so.-"Systematic" exclusion of even a small number of
reflections from calculation of the synthesis can essentially
worse its interpretability. An examplé of such a phenomenon is
shown in fig.9, where about 18% of items (concentrated along the
crystallographic axis 1) were excluded from synthesis
calculation. Another typical example of incompleteness of the
structure factor set is the absence of low-angle reflections. But
it is just these reflections that are "responsible” for outl{ines
of the molecule.

4.1 Statement of the problem of structure factors retrieval.
ASsume, we are faced with the problem of calculation the
Pourier synthesis at a finite resolution

o) = |Z.s|.ss | F(s) ol0(B) g2Ti(s,r) (9)

‘but a part of the necessary values of structure factors are
_unknown. Let Sc1 be a set of indexes 8 , corresponding to the
structure factors with known modules Fg and phases ¢f , and
Su be a set of indexes 8 , corresponding to the structure
factors with either module or phase unknown. To calculate the
synthesis (9) one should attach them (i.e. unknown structure
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factors) certain values. The most common way, namely to exclude
these reflections from the synthesis (that is to make the
corresponding structure factors =zero) can result in marked
distortions of the synthesis. . . i

We can try to select the values, we are going to attach to
unknown structure factors more well-grounded. It appears to be
possible if we dispose of some additional information on the
properties which the synthesis p(r) ,(i.e. the synthesis we'd
like to obtain) should posses. In this case we can determine
unknown structure factors so that p(r) may meet this additional
requiréments in full measure.

Assume, we know the histogram (v§}§=1 ,the synthesis (9),
calculated with proper values of all the structure factors
possesses. We shall call it the standard histogram. Then for each
trial set of unknown structure factors we can examine how does it .
‘agree with this histogram, by making the following chain of
calculations: ’

i) introduce a grid in the unit cell and calculate the trial
synthesis values at the grid points '

- . i¢°(8) -27i(s,r))
=ty - LT Pwe e e

V1 ges, (9%

ip°(8) -2mi(s,r))

+ 17 Fs) e ¢ e LA
) IVl 5es _
o .
ii); .calculate the histogram {v§}§=1 , corresponding to tt

obtained synthesis;

iii) compare how close are the standard histogram and a
calculated one, for example, by using the criterion of histogram
closeness of the following form

. 1K('V°—'V°-)2
Q(p°)= —y —E . (10)
Kk=1 vk

It's reasonably to think that those trial phase set has a best

-agreement with the standard histogram {y;}§=1 , for which the
value (10) is minimal. So the problem of determination of unknown
structure factors can be formulated (Lunin,1986; 1988) as one of
minimization of function (10). (Values of frequencies v; depend
on values pj of trial synthesis, which in their turn are
determined by values F§ and @: of trial structure factors).

Naturally, all other kinds of additional information on the
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object (e.g. noncrystallographic symmetry, information on, the
region taken by disordered solvent and so on) can also be used in
work. The most general approach in these cases is minimization of
the compound criterion, where each of the items is "regsponsible"
for realizing of one of the additional requirements.

4.2 Quasihistograms. )

Minimization of the criterion (10) is a hard computational
problem , because no methods, based on the information on
derivatives can be applied. The matter is in-the fact that for
"small variations" of Fa and Qg values p‘; (calculated from
(9_") ), though change “a few, remain inside the same bins as
before. So, values of frequencies v;' remain unchanged for small
variations of trial values of structure factors and all the
derivatives of the oriterion (10) are equal to zero. That is why
in practice a few different criterion of quality of structure
factor trial set was applied.

The frequencies {v;}§=1 , calculated in accordance with
formula (2) can also be determined by the formula: -
N
c _ -
vk——N—zh(tk pd) .
3=1
where

1/6 for |tis A2,

AS () = {
0 tor |t|> A/2 ,
A 4s the length of the bins, tk are the middles of the bins.
*Bad* properties .of the criterion (10) result from the fact
that the wvalues of '”;: . are calculated by means of
piecewise—constant function A (t).
Introduce (Iunin,1988)
DEFINITION: Let A(t) be an arbitrary function such that:

f A(T) At = 1

By quasifrequencies (connected with the function A(t) ) we mean
the values, calculated from the formula:

. N

Y= — L A (G- p)

J=1 o

A set of quasifrequencies {'vk)‘l:=1 we call a quasihistogram.

If the function A(t) continuously differentiable (or, at
least, piecewise-continuously), quasifrequencies depend smoothly

16



on the values of modules and phases of structure factors, that .
were used for calculating p(r) . This makes it possible to use a
more convenient criterion of the trial phase set quality of the
following form. .

Assume, we know the standard quasihistogram Wy, )
corresponding to the function p(r) to be found. We determine a
criterion of quality for trial set of unknown structure factors
{ P°(8)exp(ip(s) }BESu in the form :

K ts) O 2
G- Ly Casw)’ SR
K k=1 'vk

Now the problem of determination of unknown structure factor
values can be formulated as the problem of minimization of the
criterion (11). To minimize this criterion a special program,
realizing algorithms of steepest descent, fast Fourier transform,
and  fast  differentiation was written. To calculate
quasifrequencies the piecewise-linear functions of the following
form:

-(1/2%) |t| + 1/=2 for |t|sz ,

Au(t)ﬁ{ . (12)

for |t|>& .

were used. .

The main idea of quasifrequencies introducing is that we
don't refer a contribution of a grid point to a single bin any
more, but distribute it over some neighboring bins. In this case
values of contributions are sensible to the p P changing and
thereby make quasifrequencies sensible to small variations of
trial structure factors. It's shown, that if standard frequencies
are known, the standard quasifrequencies can be calculated.from
the formula: .

~ 1 N o _

Vo= gL MG e [ M v At . (13)

J=1 .
Formula (13) shows also “that turning to quasifrequencies leads to
a certain smogthing of the starting -frequencies distribution. The
main idea of Q changing relative to the criterion (10) is passing
over from comparison of histograms of trial and actual syntheses
to comparison of some average histogram .characteristics.
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4.3 Test retrisval of structure factors for subtilisin.

To check-up the efficiency of the above “approach a set of
teats was conducted (Lunin 1986; 1988). The test object was an
atomic  model of subtilisin (Wright, Alden & Kraut,1969), placed
in ‘'a 73x64x48 A unit cell in space group P2,2,2,. Atomic
coordinates were used to calculate the values of structure
factors and the syntriesis at a resolution 44 (Fig.9%). The
synthesis was used to calculate the quasifrequencies ( an
interval (-0.5, 1.5) was divided into 30 bins and function A(%)
of form (I2) with =5 was applied). -

After that, a situation of lack of information on some of
structure factor 'modules was simulated. About 18% of structure
factors (352 out of 2104) were declared to be unknown and an
attempt to determine them by minimizing (11) was made. The set of
lacking reflections su was obtained duringwbne of the real
X-ray experiments (the corresponding reflections - were not
obtained on the technical ground). The most part of elements of -
‘Su were concentrated near the axis 1 of the reciprocal space..

Purther tests were conducted in two modifications. In one of
them it was assumed that we know only values of structure factors
F°(a)exp(i(p°(a))~ for +the set S4 anéd a standard
quasihistogram {v‘;}§=1 . The problem was to restore both modules
and phases of unknown structure factors. In the second
modification it was assumed that for sesh1 only phases are
unknown, but modules are known and the problem was to restore
unknown phase values.

The 1-st test was devoted to an attempt at restoring both
phases and modules of structure factors with sesu . The starting
values for these structure factors were equal to zero. One of the
sections of the starting synthesis (i.e. synthesis constructed
from incomplete set of reflections) is shown at Fig.9b. As a
result of 10 cycles of minimization the value of the criterion
(11) has dropped from 0.3x10"2 to 0.5%10"5 . Unknown phase
values were determined with an average error 37° . value of
R-factor for restored values of the stiructure factors modules was
0.46 . Fig.9° shows a section of synthesis, constructed with
restored values of unknown structure factors. There is a marked
progress as compared with the starting picture.

In the second test it was assumed that the modules of
structure factors for the set Su were known and the problem was
to restore the phase values. The starting phase values (when
minimizing criterion (11)) were the results of the 1-st test.
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Fi%.9. Sections z = 12/48 of syntheses at a resolution 4%
calculated from subtilisin model : a) exact synthesis;
b) starting synthesis (about 18% of reflections are eliminated
from the synthesis); c) restored modules and phases of eliminated
reflections; d) restored phases (modules were known) of
eliminated reflections.

Five cycles of minimization resulted in the value of minimizing
criterion 0.6x107% and average value of phase error 33°
Fig.9d shows a section of synthesis that was calculated by using
restored values of structure factor phases (values of modules
were exact).

" 4.4 Determination of lost structure factors for the "dry"
form of 7-crystalline IIIb. .

The above procedure of structure factors retrieval was

applied %o analyze the dry form of 7Y-crystalline IIIb. The
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structure of protein 7-crystalline IIIb from calf's eye lens has
been investigated at the laboratory of doctor Chirgadze at ths
Protein Research Institute USSR Academy of Sciences and at the
laboratory of professor T.Blandell in Birkbeck-college (England) .
The protein crystals belong tc_) the space group P2 12 12 1 ,wit? the
unit cell parameters 58.7 x 69.5 X 116.9 L .The structure of
T-crystalline was refined at a resolution 2.5 X (Chirgadze
et.al.,1986). Another diffraction set of "dried" protein was
collected at & resoiution up to 1.9 A (Chirgadze et.al.,1989). It
has a smaller unit cell: 57.38 X 70.13 X 115.4 A. For the
different modifications the discrepancy in the data over 2.5 4
area appeared to be: *

S| F,_, -~ P,
R=2 s! Twes ~ Faryl = 0.255

zsl Fwet + Fdi-yl -
On the technical ground "the initial "dry" set lacked of
considersbly many reflections (the area up to 4 A showed only
2834 out of 4224 possible reflections). An attempt at restoring
some of the lost data, by making use of the information on the
histogram of electron density synthesis was made.

We started with a synthesis at a resolution up to 4 A&,

constructed from 2852 reflections with the coefficients
P y4ry(8). expl 19,080 1 (14)

where Fdry(s) are modules of the structure factors of the
second ("dry") modification, (pmt(s) are phases calculated  from
the refined atomic model of the first modification. Fig.10 shows
some sections of the synthesis calculated from these values of
the structure factors. It should be stressed that quality of
synthesis depends - not only on the lack of some necessary
reflettions, but also on a certain errors in phases, because they
corresponded to the 1-st modifications, but not to the second
one. - ‘ ‘ v
Then we tried to determine the lacking structure factors
(and’ phases, and modules) from the condition of minimum (11).
Standard frequencies were determined- from the procedure,
expounded in section 2. The values of standard quasifrequencies
in expression (11) were calculated from the values of frequencies
in accordance with the formula (13). Some sections o} the
synthesis calculated with added restored structure ‘factors .are
shown in Fig.10.
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a)

D)

Fig.10. Syntheses at the resolution 4i for 7v-crystallin IIIb :
a) the synthesis with the coefficlents (14), some reflections
are absent); b) restored values of structure factors are included
into the synthesis. .

5. USE OF THE HISTOGRAMS IN THE PROBLEM OF PHASE REFINEMENT.

In the paper (Lunin & Vernoslova,1991) we méde an attempt to
find out which is the place, the procedures of phase refinement,
based on the data, obtained from the histogram of the Fourier
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synthesis, take as compared with other. methods. of phase
refinement. The analysis was based on the three main
characteristics of the phase refinement method:
' i) what is the additional information on the object, our

method require; 4 -

ii) how is_ it (the additional information)'transformed into
mathematical form: ) ’

iii) what is .the calculation procedure we use fo determine
phases.

5.1 Additional information as presented in the form of

the equation p(r)=tipl(r).

In many cases (Lunin,1985) the additional information on the
properties of the electron density syntheses can be expressed in
mathematical terms as the property of the electron density
distribution function to remain unchanged when a certain
transform of the function is made ’

p(r) = <lpl(r) . . (15)
Here T 1is a transform (specially picked up), depending on what
is the additional information we use. Thus, for example, presence
of the local {(noncrystallographic) symmetry'is equivalent to the
equation (15) with the transform T(p), making by the electron
density averaging in symmetricaily connected points. The other.
kinds of additional information (Sayre equations, nonnegativeness
of p(r) , known molecular boundaries, finite set of the function
values and so on) can be presented in the analogous way.

5.2 Iterative approach to phase determining by using the

equation p=T[p]. )

Equation (15) is equivalent to the following systém of
equations for structure factors of the function p(r) '

1
F(s) = | ${ 1l — ¥ F(w 10w g-2miu,r)y ( 16 )
v
1 . ”
9(s) = argl % { 1l v T F(w) olP(W g2zl 3 (47
u

Here ?s{ v } 1is the s-indexed structure factor corresponding
to the function v(r) , |z| is the module, and arg{z} is the
phase of & complex number 2z .

Considering modules of structure factors {F(s)}s to be
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known from the X-ray experiment, we can regard the system of
equations (16)-(17) as one, available for determining or
refinement of phases {¢(s)}

The great number of" methods of phase refinement are based on
the iterative procedure of solving the phase part of . those
equations by the simple iterations method (Lunin,1985). The
radial ﬁart is simply ignored. Many works on phase refinement are
based (evidently or not) on this iterative procedure and vary
only in forms of T{p] transformation.

It is shown in the paper (Lunin & Vernoslova, 1991), that
the property of the electron density distribution to have a
prescribed histogram can also be presented in the form (15). In
this case, transformation <[p] is made in two stages. First, a
-modifying function AL(E) (own for each of the possible
functions p(r) ) is constructed as a solution of the equation:

N*%(Ay) = Np(t) (18
Here N°®* and N, 4ave cumulative functions, corresponding to
the exact PFourier synthesis and the trial one p(r)
respectively. Then the modification realigzes:

p(r) —=> p™(r) = Aplp(r)) = 1lp)(r). (19

It's shown that solution of equations (17) (corresponding to this
transformation) by the method of simple iterations is a base.of
recently suggested methods of phase refinement by applying
histograms. They are histogram specification (Harrlson 1989) and
histogram matching (Zhang & Main,1990).

It‘s also shown in the paper (Iunin & Vernoslova,1991), that
in the case when phases of structure factors contain some errors,
transform (18)-(19), restoring proper histogram is realized with
modifying function hp(t) » which 1s very close to the function
3p2—2p3 » widely used in electron density modifications. It means
that ‘the "classical" method of electron density modification can
be regarded as one, using (in a hidden form) specificity of the
histogram, corresponding to proper Fourier synthesis.

6. DIRECT LOW-RESOLUTION PHASING.

In this section ‘a new approach to direct solution of the
phase problem for low angle reflections is propdsed (Lunin,
Urzhumtsev & Vernoslova,1990). The approach uses the histogram,
corresponding. to the electron derisity synthesis, as an indicator
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of correctness of phase values.

The procedure can be- divided into three stages. First, one
generates a large number of phase sets and select those variants,
whose .electron density synthesis histograms are close to the
prescribed standard. Then the set of the admissible variants is
studied by the cluster analysis methods. Inside the set one picks
out a subset grouped about the supposed solution of tﬁe phase
problem. At the third stage one averages the phase sets inside
the picked up subset (i.e. cluster) to "extract" some possible
phase problem solutions.

The application of the above procedure can be illustrated
by the following test example.

6.1 Nodel structure. .

For test purposes we simulated a dimer built from two atomic
models of carboxypeptidase and located in a 76x106x116 A unit
“cell in a space group P2,2,2,. The test forestalled the work
with the elongation factor G (Chirgadze et.al.,1983), therefore
the paremeters of the unit cell of the eiongation factor G were
taken to construct a.dimer model with the equivalent molecular
weight. The dimer model was used to calculate the structure
factors, with modules, simulated empirically obtained values
{F°*(8)} , whereas phases were used only to check the answer. The
test consisted in determination of the phases of 29 low-angle
reflections-at a resolution 30 A . The histogram {v;x}§=1 ,
corresponding to the syntheslis calculated with the exact values
of modules {F°*(s)} and phases {¢°*(s)} was considered to be
known.

The generated phase sets were analyzed in accordance with
two criterions:

1) a criterion of histogram closeness, indicating how close
are the histogram of synthesis, calculated with generated phases
and the standard histogram {vP*}%_. ;

il) a criterion of Pourier synthesis closeness, indicating
how close are the values of generated phases to correct ones.

The value, characterizing difference between histograms was:

, K
Q =Q vy} . (VD =) | v - vg* | A, - (20)
k=1
We call it the distance between histograms {v;) and {v;x) . of
course, other measures of histogram closeness may be introduced,
such as (10), for example, and so on. Our testis have not revealed
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any serious advaﬁtage of one over the other. -

The aim of solving the phase problem is to produce an
_interpretable synthesis. Equal phase errors in weak and strong
reflections result in very different synthesis defects. This is
especially appreciable when the synthesis is calculated with a
small number of structure factors. That is why, when comparing
phase sets, one should take into account whether these - phases
correspond to weak or strong reflections. Examples of weighted
criteria of the phase set closeness are: the correlation
coefficient '

C(p°.p°) = ¥ PZ(8)cos(9°(8)¢°*(8)) / ¥ F2(s)

8 8
(its mayimum value is 1 .at p® = p°° , minimum is -1 at
p® = -p®* , and the mean value is O ), and the criterion of

closeness between syntheses

Gg(P%.p™) = ([ 1% (r)-p*(m) 1Pav, / [ 10 (r)1%av )72 =

(2 - 26 )1/2
(its minimum value is Q at' p® = p® , maximum is 2 at
p°® = -p®* , and the mean value is vZ ). :

¥hen solving the phase problem a& initie, we should bear in
mind that the phase sets should be reduced to the same origin
before comparison. The matter is in the fact that all the
functions of the form :

PE (X = pS@T + 1),

(where t is an arbitrary vector, @ = %1 ) will have the same
set of structure factor modules and the same t}istogram {v;}
Therefore to compare the two Fourier syntheses p® and p°* , we
should shift p°® into the coordinate system where it is as close
to p°* as possible, (and, possibly, turn to enantiomorph). We
define the "crystallographic" distance between p° and p°*
(or, equivalently, the weighted crystallographit distance between
the phase sets {@°(8)} and {@®*(s)} ) to be:

Q. =min min Q_(pS , , p®X) (21 )
8 " tel zewy st P

(here T is a set of possible.shifts of the origin). If p®**(r)
has a symmetry group, distinct from P1 , the set T of possible
shifts may consist of a finite number of variants. For example,
for the group 1’212121 we should check 16 variants of origin
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and enantiomorph to calculate Qs.

6.2 The first stage. Selection of the admissible variants.

Table 3 shows distribution of the values . Qh and Qs for
400 000 phase sets ( 29 reflections in each set) generated by
randomizer (requirements of symmetry of the group P212121 were
naturally taken into account). First of all we can see from the
table that phase sets, resulted in the histograms, closest to the
standard oqqﬂﬁ_oh < 0.10 ) include variants both close to the
exact set and very far from it ( Qs “ 1.0 ). This means,
particularly, that a good histogram does not guarantee the
correct synthesis. ' »

A more thorough analysis of Table 3 allows to notice that
the variants with good histograms are divided into two groups:
one consists of the variants with Qs" 0.5 , and the other
__consists of the variants with Qs" 1.0_. As requirements to the
quality of histograms lower ( thncrease ), & number of variants
increase, the deviation of values Qs from the mean grow inside
the groups and the groups coalesce. Such a picture allows to
infer, that there should exist at least two different phase sets
resulting (when modules of structure factors are prescribed) in a
prescribed histogram.

Table 3. The distribution of the values dh and Qs. for trial
phase sets (there given the number of sets for which the values
Qh and Q. belong to corresponding intervals; the values,thand Qs
are calculated from the formulae (20) and (21) relatively).
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6.3 The second stage. The cluster analysis of the set of

adnissible variants. .

Since in reality the standard histogram is predicted with a
certain error, all the phase sets, for which. Qs is not top
large, should be considered as not contradicting to the standard
histogram. In our tests we can regard as admissible, for example,
39 variants, ensuring value Qh(pj,p°x) < 0.1 . In reality the
exact phase values are unknown;“so the values of the criterion of
closeness Qs(pj.pex) between the generated phases and the exact
‘ones can not be calculated. However, one can calculate the
intervariant distances between admissible phase sets Qs(pg,p;)
The procedure of cluster analysis allows (basing on ithe analysis
of matrix of intervariant distances between the admissible
variants) to make a notion of how are these variants distributed
in many-dimensional *"configurational® space: whether they form
one (or a few) compact grouws or dissipate evenly all over the
space. _The procedure of cluster analysis consists in Jjoining
together close variants (those with Qs(pg,p;) < g). It is clear
that, if € 1increases, the number of variants in each of the
clusters increases, but the number of clusters decreases. Fig.11
illustrates process of cluster organization (the order in which
the variants are shown in Fig.11 1s -chosen proceed from the
simplicity of tree representation; it is, of course, not the
order in which they were generated). The analysis was made by
using the program P1M of the software package BMDP (Dixon,1977).

Q

Fig.11 Organization of
admissible variants into
clusters in the test with
model protein.

%t 02 03 94 65 06 07 08 08 1O

Fig.11 shows that 39 admissible variants are separatedAinto
two clusters: cluster A consisting of 21 variants and cluster
B consisting of 18 variants. It appeared so (table 4), that

- .27



cluster A included variants at distances Qs ( from the exact
solution) varied from 0.23 to 0.66 , and cluster B included
variants at distances Qs > 0.89 . It should be emphasized that
this division was made with the use of the intervariant distances
matrix only and took no account of how far the wvariants actually
were from the exact solution.

6.4 The third stage. Aberaging of variants inside the

cluster. )

To choose the phase set that is the solution of the phase
problem, the' "centre of gravity" was chosen for each of the
clusters. More precisely, the figure of merit m(s) and the
"best" phase qP°5t(s) for every reflection were determined in
each of the clusters in accordance with the formula:

imd(s)

best 1 M
m(s) ¢¢ *He) " Yo e
J=1

Here M 1is the number of variants in the cluster (it is 21 for
cluster 4 ) and wd(s) is the value of.the s-indexed phase in
the Jj~th phase set. Naturally, all the phase sets were reduced
to the same coordinate system and enantiomorph before averaging.
For this purpose, one of the cluster variants was taken as the
frame of reference and the others were shifted to those
coordinate systems that ensured a minimal possible distance 65
from the frame of reference. The synthesis p,(r) was calculated
with modules {F°*(s)} and phases {@°®*%(s)} , obtained in such-
a way. Analogous procedure of averaging was applied {o - 18
variants of cluster B and the synthesis pB(r) *was calculated
in the same way. Fig.12 shows the maps of electron density
distribution in one of the sections of the wunit cell,

corresponding to syntheses pA(r)' and pB(r) as well as to the

synthesis p®*(r) , calculated with exact phase values.

Table 4 lists mean values of the figures of merit and the
phase errors for the phases {¢®°**(8)} , made by averaging in
clusters A and B . One can see from this table, that cluster,
corresponding to the true solution (cluster A ), has a larger
mean figure of merit and a smaller dissipation of variantis about
the mean variant, than cluster B , corresponding to the false
solution of the phase roblem.

6.5 Test direct phasing for cytochrome b5 .
The object of the next testing was cytochrome b5
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Table 4. Characteristics of clusters, picked out during the
test with dimer model structure.

> Cluster A Cluster B

Number of variants in cluster 21 18

Distances Q8 between cluster
elements and exact phase
problem solution

min 0.23 0.89

max 0.66 1.12

average 0.45 0.97

<m>, 0.52 0.41

< Q(p°*%,p ) >, .0.42 0.54

Q_(p°o°*,p%%) 0.34 0.95
C (pPe=%,p%%) 0.94 =~ 0.55

< 1gP°St- %) >_ (deg.) 40 71

BT - S

N\ 4 R ~

Fig.12. The section 4 AN
z=6/40 for the PFourier c) k\_,)* (ngéézf_
syntheses at a resolution
304 for model structure:

a) exact phase values;
b) phases, obtained by
/;;::F\ X

averaging cluster A;
c) phases, obtained by

averaging cluster B.
Values of modules were
exact.

(Mathews,Levine & Argos,1971), 65X46X30 A unit cell, P2,2.2,
space group. Atomic coordinates, taken from the Protein Data
Bank, were used to calculate exact values of structure. factors;
the structure factors were used to calculate the Fourier
synthesis at the resolution 13.684 ( 29 reflections) and to

construct the standard histogram. Then the following problem was
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formulated: to determine phase values of structuré factors of the
range 13.6 A , by using for this purpose only modules of
structure factors and the standard histogram.

For this purpose we generated 500 000 - random phase sets
and separated 49 “of them resulting in the histogram close to
the standard one ( Qh< 0.1 ). Pig 13 illustrates the process of
cluster formation. The best of them contains solution of the
phase problem with average phase error 32° and the correlation
coefficient C = 0.92 . Fig.14 shows .the maps of the electron
density distribution for exact synthesis and synthesis with
pPhases, determined by means of the above method.

6.6 Test direct phasing for Bence-Jones protein. -

This proiein crystallizes in space group P21212 ~in a
'55%52x43 4 unit cell (Furey et al.,1979). For the protein we
determined phases of 25 -low-angle reflections (at a resolution
16 A ). The process of teating was analogous to one with
cytochrome. 100 000 random phase sets were generated and 488
variants were separated fur further analysis. Fig 15 shows the
process of cluster formation. Singling out a cluster and
averaging its elements allowed to get a solution with the average
phése error 41'_ and a correlation coefficient ¢ = 0.93 .'iig
16 shows the maps of electron density distribution, calculated
with phases, determined by the suggested method.

So, the results of the tests show that the following
procedure: )
1) generating random phase sets and selecting those with
synthesis histogram close to the prescribed one;
ii) organizing the chosen variants into clusters on the basgis
of the matrix of intervariant distance Q,;
iii) averaging the variants inside every cluster

leads to a small number of possible solutions, including solution
sufficiently close to the true one.

6.7 Phase determination for elongation factor G at the

’ resolution 30 A.

The spatial structure. of the elongation factor G from
Thermus . Thermophilus are . investigated under the 1eadership of
Yu.N. Chirgadze at the protein Research Institute and the
Research Computing Centre in Puschino. The protein is
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Fig.16. Sections of the Fourier synthesis for Bence-Jones

protein,
ab initio.
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crystallized in space group P212121 in & 76x106x116 A& unit
cell (Chirgadze et.al.,1983).

To predict a histogram for the elongation factor G an
approach, suggested in section 3.4 was applied. The dimer model
mentioned above may be located in the unit cell differently. We
chose three variants of model packing and calculated histograms
for the corresponding 30 A syntheses. These his%ograms were
sufficiently close to one another (distances Qh between the
histograms did@ not exceed 0.1 ). The phase sets were generated
in four ways : with the use one from the three histograms and
with the use of the histogram, averaged over the &pree versions.
All four variants gave similar results. Below we give a brief
description of the work with +the averaged histogram.

Fig.17. Organisation | O
of variants into clusters
éor the elongation factor

09

02 031 64 S 06 67 a8

We generated 500 000 random phase sets and separated 44
of them resulting in best correlation with simulated histogram (
Q, <« 0.125 ). Pig.17. illustrates the process of cluster
formation. Averaging variants in the selected cluster we have got
phases with a mean figure of merit of 0.54 . The deviation of
variants in the cluster from the mean value was Qs = 0.46 .

Fig.18 shows a unit cell projection along the
crystallographic axis x . The obtained synthesis agrees with the
results, obtained by other methods.

7. COMPUTING PROBLEMS
7.1 The fast differentiation algorithm.
Many of the above approaches come in the end to minimization

of a complicate criterion of a trial phase set quality. Notice,
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Pig.18. Fourier
synthesis for the
elongation factor G
at a resolution 304%
calculated with pha-
ses, determined ab
initio.

The projection of
the unit cell along
the axis x is shown

that calculation of each. of the criterion values requires much
CPU time. But the most serious problem, connected with criterion
minimization is calculation of -the minimizing function's
gradient. (We calculate 1it, because it's Jjust gradient that
determines the direction of variables shifting to diminish the-
aim function value). Thus, if we use different formulae to
‘calculate the derivatives, we have to spend n times more CPU
time than for one function 'value calculation. Taking. into
account, that calculation of one criterion value requires some
minutes and the number of variables is large enough (é.g. it may
reach tens of thousands when dealing with refinement of atomic
structure), one can consider the problem to be dissoluble.
However, it was proved (Kim,Nesterov & Cherkassky,1984), that for
any function, posséssing arbitrary number of variables, one can -
construct an algorifhm, requiring equal time to calculate all the
components of the gradient and one value of the function £(x).
This fact is of great methodological importance for problems of
XSk. It follows that, when locally. refining the object's
structure, one can.use any property of the object, available for
calculation with the computer, as a criterion of model's
correctness. Realization of the general idea in reference to the
problems connected with determination of spatial structures by
XSA methods is expounded in (Lunin & . Urzhumtsev,1985;
Lunin,1985). In particular, the created algorithms allowed 'to
realize the approaches, we suggesfed in the previous sections.
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The crystals of analyzing substance possess nontrivial
symmetry, in general. So, one can essentially economize CPU time,
using this symmetry. The symmetry can be accounted in process of
fast calculation of minimizing function gradient.
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