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Abstract 

An analysis of the frequencies of different values 
encountered in protein electron-density syntheses 
reveals characteristic shapes for their distributions 
(histograms). This property can be used to refine 
ill-defined phases (and, perhaps, some of the moduli) 
of structure factors, and thus to obtain more-interpret- 
able electron-density maps. A simple empirical model 
is designed which can predict the histogram for a 
protein with an undetermined structure provided its 
unit-cell volume and charge are known. The param- 
eters of the histogram model are derived from a set 
of proteins with known spatial structures. The appli- 
cation of the simulated histogram is illustrated by an 
improved electron-density map for the 'dry' form of 
the protein y-crystallin IIIb. 

1. Introduction 

1.1. Imaging electron-density distribution in a protein 

Normally, the X-ray determination of the spatial 
structure of a biological macromolecule starts with 
searching for a function p (r) which could characterize 
the electron-density distribution in the whole crystal. 
In practice, this search always reduces to an approxi- 
mation of this function, Pd (r), at a finite resolution d: 

pa(r)=lVl- '  E F(s) exp[iq~(s)] 
Isl<l/d 

x exp [-27r(s, r)]. (1) 

We call pal(r) the 'image' of p(r) at a resolution d. 
Again, this image may not always be accurate enough 
to be interpreted properly, since some of the phases 
q~(s), and even some of the moduli F(s), may either 
be approximate or not known. Then, to remedy the 
situation and improve the image, one should have 
recourse to other types of information on the object 
studied, which could provide more-accurate values 
of structure factors to calculate the synthesis (1). 

1.2. Restrictions on the range of p(r) values 

Various restrictions on the range of p (r) are widely 
used examples of such additional information. The 
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function may be assumed to be non-negative [ p(r)-> 
0], bounded on both sides [Pmin<--p(r)<--Pmax with 
Pmin and Pmax preset], having a finite set of values 
[p(r) = {0 or 1}] etc.; the examples are many. Efforts 
were made to modify structure-factor phases in (1) 
in order that pd(r) possessed these properties. 

To examine more thoroughly the range of values 
the functions p(r) and Pd (r) can take, one should not 
only find out which they are, but also how many times 
each of them occurs. In this way, one arrives at the 
conclusion that the properties of the actual function 
p(r) and of its image pd(r) generally are different. 

Assume for simplicity that a function f(r)  [or some 
other one, p (r) or Pd (r) for instance] is calculated at 
Ntot grid points. Break an interval (Pmin, Pmax) of the 
real axis into K portions (bins). Let nk be the number 
of grid points where f(r)  values fall in the kth bin 
( k =  1 , . . . ,  K). Define the normalized frequencies 
that these values occur in the bins to be 

vk = (1/Ak)(nU N,o,), (2) 

where A k is the length of the kth bin. 
We call the set of normalized frequencies {b'k}K=l 

the histogram off ( r ) .  
An analysis of experimental data (Podjarny & 

Jonath, 1977; Lunin, 1986, 1988; Zhang & Main, 
1990) has shown that histograms of the images pd(r) 
for protein electron densities have specific asym- 
metrical shapes (Fig. 1). They are noticeably distinct 
from the histograms of synthesis (1) with random 
phases or with a number of excluded reflections 
(Lunin, 1988). Note that the shape of the histogram 
of pd(r) depends not only on the properties of the 
corresponding function p(r) but also on the 
resolution d. 

1.3. Improving the images by restraining the 
frequencies 

The histograms of images of electron-density distri- 
butions in proteins may be used to improve the quality 
of synthesis (1) (Lunin, 1986, 1988; Harrison, 1988; 
Zha~g & Main, 1990). Assume that the histogram 
{ UT} k= 1 for the desired function Pd (r) is known. Then 
we choose the values of the unknown structure-factor 
phases (and, perhaps, a small number of unknown 
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46 FREQUENCY-RESTRAINED STRUCTURE-FACTOR REFINEMENT. I 

moduli too) so as to minimize the discrepancy 

K 

Wk(V~-- v~,)2~min, (3) 
k = l  

or any other similar criterion. Here v~, are the normal- 
ized frequencies for an image p~(r) with some 'trial' 
values of the unknown structure factors, and Wk are 
prescribed weights. 

It was demonstrated with tests that the approach 
considerably improves the image Pd (r). 

The specificity of histograms (or of their charac- 
teristics) was used as a criterion for a proper choice 
of a phase set by Luzzati, Mariani & Delacroix (1988), 
Mariani, Luzzati & Delacroix (1988) and Lunin, 
Urzhumtsev & Skovoroda (1990). A close, though 
reciprocal-space, approach was suggested by Hagek 
and his colleagues to select the best phases from some 
allowable ones (Hagek, 1984; Hagek, Schenk, Riers 
& Schgen, 1985; Hagek & Schenk, 1988; Kff~, 1989). 
The criterion was the degree of agreement between 
the 'empirical' and the 'theoretical' distributions of 
semiinvariants. 

A different approach to using specific features of 
histograms was proposed (Harrison, 1988; Zhang & 
Main, 1990). It consisted in modifying the synthesis 
(1) to one with a 'good' histogram, and using the 
phases calculated from the modified synthesis for 
further iterative phase improvement. The relationship 
between the methods of 'phase refinement' (3), 'his- 
togram matching' (Zhang & Main, 1990) and 'density 
modification' will be examined elsewhere (Lunin & 
Vernoslova, 1990). 

1.4. Prediction of histograms 

The aim of this paper is to show a way of simulating 
{Vk}k=~ for a protein with the 'standard' histogram o K 

an unknown structure. First, we propose in § 2.1 a 
formula to describe shapes of histograms correspond- 
ing to proteins. This formula contains a number of 
parameters whose values must be determined. We 
define these parameters so that 'theoretical' curves 
calculated with the formula are in good agreement 
with the true histograms for a lot of proteins with 
known three-dimensional structure. The formula with 
the determined parameters may be used then for the 
prediction of histograms for proteins with unknown 
spatial structure. The simple empirical model we pro- 
pose here does not claim to reproduce all the fine 
points of a protein histogram. However, as shown by 
the example in § 3, the accuracy of simulated his- 
tograms is good enough for them to be used success- 
fully in practice. 

1.5. Short mathematical description 

The normalized frequencies (2) depend, in the strict 
sense, on the grid where the values of pa(r) are 

calculated and on the bin lengths A k.  To be more 
accurate, we should examine a limit case when the 
number of grid points grows and the bin lengths tend 
to zero: 

v(t) = l aim ° (1/A){the volume of the part of the 

unit cell where t - za/2 _< Pa (r) -< t + A/2} 

x {the unit-cell volume} -]. (4) 

Here the function v(t) depends only on the image 
Pd (r), not on the choice of the grid or the bin length. 
The values of Vk in (2) approximate those, V(tk), that 
the function v(t) takes in the middle of the bin, tk. 
By a histogram we will mean not only the set of 
normalized frequencies { Vk} ~:=~, but also the function 
v(t) whose value these frequencies approximate. 

The function v(t) is such that 

v(t) d t =  1, V ~ tv( t )d t= Fooo, 
--OO --OO 

where Fooo is the full charge of the unit cell, and V 
is its volume. 

The discrete analogs of these properties are 

K K 

Y'. VkAk = 1, Y. tkVkak = Fooo/ V, (5) 
k--1  k = l  

where tk are the bin middles. 

2 .  S i m u l a t i n g  t h e  h i s t o g r a m  

The first question which immediately suggests itself 
when one tries to use the criterion (3) is what is the 
standard histogram {v°}~:=] for the unknown image? 

t 

-o.~6 - - -o'.a ~ ' . o  o~.a o!6 o'.9 t'.2 - - f f S - - -  t'.e 

Fig. 1. Histograms of electron-density-distribution images in a 
cytochrome crystal at various resolutions ( 2/~,; -- x-- 4/~; 
- - - -  6A). 
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Here we describe the empirical procedure for simulat- 
ing histograms for proteins with undetermined struc- 
tures from histograms corresponding to proteins with 
known three-dimensional structures. 

The shape of the histogram for pa(r) depends on 
image resolution d (Fig. 1). In this paper we restrict 
ourselves to images at a resolution of 4A.  An 
analogous procedure can be applied at any other 
medium or high resolution. 

The shape of a histogram also depends on the 
atomic temperature factors. Fig. 2 shows histograms 
corresponding to different values of the temperature 
factor. In all other calculations we put the values of 
the temperature parameters for all atoms equal to 
IOA 2. 

This paper is devoted to a computer analysis of 
known protein structures. Therefore, wherever images 
of known proteins are encountered we deal with those 
images (1) whose structure factors are calculated from 
atomic coordinates. These were taken from the 
Protein Data Bank. 

2.1. Empirical histogram model 

Fig. 3 shows histograms corresponding to different 
proteins. It can be seen that the frequencies (2) vary 
markedly from protein to protein. But the situation 
changes when we move to the 'normalized volumes', 
so that 

Vk = Vk V~ Fooo (6) 

[Vk is the volume of the part of the unit cell where 
the values of the function pa(r) lie in the kth bin 
corresponding to one electron of charge]. 

Analogously, we introduce the function 

v( t) = v( t) V/  Fooo. 

Fig. 4 shows the curves of Fig. 3 modified by (6). 
Here we see that the plots are much the same in the 
left-hand and fight-hand parts, showing considerable 
differences in the region of the central peak only. This 
may be explained by the proteins having more- or 
less-compact molecular packing and, therefore, 

-o7( -o~a 

Fig. 3. The histograms of 4 A electron-density-distribution images 
in various protein crystals ( staphylococcal nuclease; - - w  
chymotrypsinogen; w x ~ carbonic anhydrase). 

t 
l 

Fig. 2. The histograms of 4 A electron-density-distribution images 
in a cytochrome crystal at various atomic temperature factors 
( B = 50 A2; w__ B = 30 ~2; w x m B = 10/~2). 
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0 3  0 6  OCJ 1~2 = -O 8 
Fig. 4. The modified histograms (see § 2.1) of 4 A, electron-density- 

distribution images in various protein crystals ( staphylo- 
coccal nuclease; chymotrypsinogen; - - x n  carbonic 
anhydrase). 
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different volumes of unoccupied lower electron- 
density regions. 

The simplest empirical model which we suggest to 
{Vk}k=l has the form describe the modified histograms r 

( v k = v ° +  V /Fooo-~ ,  qO, k = l , . . . , K .  

j=a (7) 
o K Here, {v k} k= ~ is a universal distribution of the normal- 

ized volumes, common for all proteins and 'respon- 
sible' for the distribution of pd(r) values inside the 
molecule region; and {qO}kK=~ is a universal (common 
for all proteins) distribution 'responsible' for the dis- 
tribution of pd(r) values in the protein-free volume 
of the unit cell. This volume per single electron charge 
is 

K 

V/Fo00- ~', / ) ° A j .  
j = l  

Model (7) is a discrete analog of the 'continuous' 
version 

oo 

v ( t ) = v ° ( t ) + [ V / F o o o  - ~ v°(x) dx]q°(t) .  
--00 

2.2. Model parameters VOk and qO 

The normalized frequencies Uk obey (5). This 
means that if we want the model (7) to work for all 

f D 0 / K  Fooo and V, we should require from / kS k=l and 
{q°}~= 1 that for all Fooo and V 

K K 

X [ V ° k + ( V / F o o o  - X 1 ) j A j ) q ° ] A k  = V / F o o o  
k = l  j = l  

and 

K K 

tk[V °k + ( V /  Fooo - ~, Vj Aj)q°]Ak = I. 
k = l  j = l  

If we introduce the notation 

K K 

S,,= Y. vOkAk, Ro= Y~ tkVOkAk, 
k = l  k = l  

K K 

Sq = ~, q° Ak, Rq = ~, tkqO Ak, 
k = l  k = l  

we can rewrite these requirements as 

FoooS (1- Sq)+ V ( S q -  1)=0 
(8) 

Fo0o(Rv - S~Rq - 1) + VRq = O. 

These are valid for all F0o0 and V only when all their 
coefficients are zero, which means that the distribu- 
tions o r {/)k}k---1  and {q°}~= 1 should be such that 

K K 

Sq = ~, q° Ak = 1, Ro = ~, tkVO ak = 1, 
k = l  k = l  

s: (9) 
Rq = ~, tkqOkAk = O. 

k = l  

Note that equations (8) do not fix the value So. 
Moreover, if we rewrite (7) as 

Vk = (v ° - Soq°k) + (V/Fooo)q°k, k = 1 , . . . ,  K, 
(10) 

we can show that if(9) and (10) hold for some {V°}kr=l 
and {q°}kr=~, they will also hold for v ° replaced by 
VOk+hqOk with k =  1 , . . . ,  K and any A. This means 

I I ) 0 / K  that / kSk=~ in (7) may be ambiguous: when we 
change v ° to v°+ hq ° in (7), the values of Vk calcu- 
lated from this formula remain the same. To get rid 
of the ambiguity, we can somehow fix a value of So, 
say, by putting 

K 

So = E v°kAk =0. (11) 
k = l  

We stress that, unlike (9) which follows from (5), 
(11) is arbitrary, introduced to fix one of the possible 

Vk}k= 1 • We equally could have parameter sets { o s: 
claimed that So be equal to some other value. 

2.3. Determining histogram parameters 

We have found the parameters { v~} ~:= 1 and { qO} kr= 1 
in (7) from a set of J (=15)  proteins (Table 1) from 
the Protein Data Bank, which we call 'base' proteins. 
For each of them we used atomic coordinates to 
calculate structure factors, calculate the image Pd (r) 
at a resolution of 4 ~  and determine {VCkJ)}~:=l by 
(2)-(6). [Here the upper index (j) is the number of 
the protein in the base set, and k is the bin number.] 
The values of {v°}~=l and {q~}~:=l were derived from 
the requirement that 

K 
. v o + ( V(J / cJ  o o -" -- l ) i A i ) q k  (12) v k, theor  ~ 0 0 0  2 

i=1  

fit best the histograms of the base proteins: 

J K 
Q = E E r ~r(J)~(J) a / ~ ; ) l r r ,  O) l)(kJ)] L " ' I  tOt Jr 0 0 0 t - ~ k / v  . I t~Uk,  t h e o r - -  v (k J ) )2 /  

j = l  k=l 

~ m i n  (13) 

under additional conditions 

K K 

V°Ak=O, ~ tkVOkAk= l, 
k = l  k = l  

K K 

2 q ° A k = l ,  ~. tkqOAk =0. 
k = l  k = l  

(14) 

Here l ~ ( J )  V (j) and ~ r ( j )  - - 0 0 0 ,  • "  tot a r e  the charge, the volume 
and the number of grid points in the unit cell for the 
j th  protein, respectively, and Ak is the length of the 
kth bin. The weight multiplier in the minimized 
criterion (13) represents passing over from values Vk 
tO the numbers nk of the grid points with the values 
in the kth bin. Hence, the minimized criterion (13) 
is merely 

J K 
Q =  ~, ~ r .o)  n~J))2/n~J) 

~, t~ k, theor  - -  
j = l  k=l 
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Table 1. Base protein set 

Protein Files* N R e s t  
Carbonic anhydrase B 2CAB 261 
Chymotrypsinogen A 1CHG 245 
Cytochrome B5 2B5C 93 
HIPIP 1HIP 85 
Bence-Jones protein 2PHE 114 
Insulin 1 INS 21 + 30 
Lysozyme 1LZ1 130 
Ovomucoid third domain 1OVO 4 x 56 
Phospholipase 1 BP2 123 
Plastocyanin 1 PSY 99 
Prealbumin 2PAB 2 x 127 
Proteinase A 2SGA 181 
Ribonuclease A 1RN3 124 
Staphylococcal nuclease 2SNS 149 
Myoglobin 1MBD 153 

Criteria o f  model  and 
real histograms 

agreement  
Reference Q:~ 

Kannan et al. (1975) 1649 
Freer, Kraut, Robertus, Wright & Xuong (1970) 1768 
Mathews, Levine & Argos (1971) 3500 
Freer, Alden, Carter & Kraut (1975) 692 
Furey, Wang, Yoo & Sax (1983) 1417 
Dodson, Dodson, Hodgkin & Reynolds (1979) 4260 
Artymiuk & Blake (1981) 1303 
Papamokos et al. (1982) 1788 
Dijkstra, Kalk, Hol & Drenth (1981) 865 
Guss & Freeman (1983) 1221 
Blake, Geisow, Oatley, Rerat & Rerat (1978) 1240 
Sieleski et  al. (1979) 2603 
Borkakoti, Moss & Palmer (1982) 2140 
Cotton Hazen & Legg (1979) 7180 
Phillips (1980) 3641 

* Filename in Brookhaven Protein Data Bank. 
t Number of residues in the asymmetric unit. 
~t From equation (15). 
§ From equation (17). 

Qg§ 
1"15 
0"94 
0"93 
0"52 
1"14 
1 "47 
0"54 
0"71 
0"65 
0"89 
0"55 
1"29 
0"68 
1 "55 
1 "99 

t* 
-0.450 
-0-285 
-0.255 
-0.225 
-0.195 
-0.165 
-0.135 
- 0 . 1 0 5  
-0.075 
-0.045 
-0.015 

0.015 
-0.045 

0.075 
0.105 
0.135 
0.165 
0.195 
0.225 
0.255 
0.285 
0.315 
0.345 
0.375 
0.405 
0.435 

I) ° 

0.12 
0.83 
1.31 
1 . 8 4  
2.37 
2.64 
2.03 

-1.04 
-7.58 

-16.41 
-22.23 
-21.04 
-13.84 
-4.93 

0.94 
3.55 
4.26 
4.10 
3-87 
3.67 
3.46 
3.20 
3.15 
2.98 
3.06 
2.86 

Table 2. Histogram model parameters (at 4 ~,) 

qO a~" t* v ° qO a t  

-0.01 201.2 0.465 2.64 -0.01 10.6 
-0.05 48.9 0.495 2.55 -0.01 9.6 
-0.08 34.0 0.525 2-59 -0.05 7.7 
-0.08 35.5 0-555 2.31 -0.01 12.9 
-0.05 58.6 0.585 2-26 -0.02 8.9 

0.09 114.7 0-615 2.28 -0.04 6.4 
0.49 175.5 0.645 2.13 -0.03 6.5 
1.48 166.5 0.675 2.02 -0.03 11.4 
3.28 32.3 0.705 1.84 -0.01 6.3 
5.56 68.0 0.735 1.92 -0.04 6.0 
7.05 210.9 0.765 1.82 -0.04 7.9 
6.78 238.0 0.795 1.58 -0-01 9.3 
4.99 66.4 0.825 1.52 -0.01 9.3 
2.72 35.6 0.855 1.38 -0.00 6.4 
1.15 44.4 0.885 1.30 -0.00 8.7 
0.34 54.9 0.915 1.15 0.00 7.4 
0.04 31.0 0.945 1.02 0.00 8.3 

-0.02 17.1 0.975 0.81 0.02 10.7 
-0.03 12.3 1.005 0.69 0.02 19.4 
-0.03 12.2 1.035 0.55 0.02 18.5 
-0.02 11.5 1.065 0.34 0.04 19.8 
-0.00 18.5 1.095 0.29 0.03 38.1 
-0.02 16.0 1-125 0.19 0.02 36.4 
-0.01 22.2 1.155 0.15 0.01 64.9 
-0.04 11.2 1.185 0.06 0.02 57.6 
-0.03 11.9 1.5 0-00 0.00 191.2 

* The values of t correspond to the middles of bins. 
t Model accuracy characteristics a are defined in equation (16). 

where 

l S t o t ~ ,  k ~.a k ~ (a,,tot~t 000.~.ak/ 

n ( J )  - l g [ ( J ) ,  (J)  A / K r ( J )  if?(J) A I li/(J)h, (J) 
k, theor - -  • • tot ~" k, theor~'ak ~ k 1 ,* tot a O 0 0 ~ . a k / - -  I v k, theor • 

Conditional minimization (13)-(14) was per- 
formed by the Lagrange multipliers method. 

2.4. Choosing the criterion of histogram closeness 
Y~)01K When determining l kJk-~l and {q°}~c=l from the 

minimum discrepancy condition (13) at 4 /~  resol- 

ution, we have a value of  Q equal to 0.36 x 105. Table 
1 gives the values of  simulated and 'real' histogram 
discrepancy for base proteins: 

K 
Q(J) y~ r.,(J) ..(j)xE/..(j) (15) 

-~- ~,Uk,theor-- rlk ] / U k ,  theor" 
k= l  

Large values of criteria Q and Q(J) show that 
~'(J) is not a proper estimate the quantity n~k j), or "k, theor, 

for the mean-square deviation of 'real' n~k j) from 
, , ( j )  theoretical n~iheor- The deviation is due, first of  all. 
to a high idealization of  (7), rather than to the n~ jl 



spreading statistically about their means. When 
improving structure factors by minimization of (3), 
it is convenient to choose the weight coefficients Wk 
SO that they reflect the accuracy of the predicted 
frequencies Vk. We defined the correction factors to be 

J 
ak ( l / J )  ~ (*'(J) .,(j)x2.,(j) (16) ,~k, theor--t~k / t~k, theor 

j = l  

and redefined the criterion of closeness between 

- . o ~  - - - o ' . a  ° o ' .  

(a) 

o g.a g.6 ~9 ~ ' . 2 - - - E g - - - g . 8  

(b) 

t',4' 

-0%- - -..o'.a o o'.3 o'6 0'9 f.2 . . . .  i ' s  . . . .  ?.e 
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(c) 

Fig. 5. The simulated histograms (x x x)  compared with their 'real '  
counterparts  ( ): (a)  H I P I P  (best agreement among the base 
proteins); (b) myoglobin (worst agreement among the base 
proteins); (c) concanavalin (not included in the base protein list). 

theoretical and calculated histograms as 

K 
2 Q~ = K -1 ~ (nk, th¢or-- nk,=,¢) / aknk, th¢or 

k=l  
K 

= K -1 ~, ( N a k / a k )  
k=l  

X ( Pk, theor -- Vk~calc)2//2k, theor" (17) 

Then the mean value of Qg for base proteins equals 
one, and it is not reasonable to continue the minimiz- 
ation of criterion (3) when Qg has reached 1.0 or a 
lower value. 

The values of { v °} kr=l, { qO} kr=l and correction fac- 
tors ak are given in Table 2. Table 1 gives the values 
of criteria (15) and (17) for the base proteins. Fig. 5 
shows best and worst agreements between simulated 
and 'real' histograms for base proteins and an 
example of histogram prediction for a protein absent 
in the base set. 

3. Application: restoring structure factors for 
T-crystallin l l lb  

We tested histograms simulated by (7) with 7-crys- 
tallin IIIb. This is a protein from caius eye lens. One 
molecule weighs about 20 000 daltons. The crystals 
belong to space group P2~2~2~ with unit-cell param- 
eters a =58.7,  b =69.5 and c =  116.9/~ (Chirgadze, 
Sergeev, Fomenkova & Oreshin, 1981). The intensity 
array was collected at a resolution up to 2.5/~ (Chir- 
gadze et al., 1986); this was the resolution at which 
the structure of 7-crystallin IIIb was refined. Another 
diffraction set of ( 'dried') protein crystals was collec- 
ted at a resolution up to 1.9 ,~ (Chirgadze et al., 1990), 
and had a smaller unit cell: a=57 .38 ,  b=70.13 ,  
c = 115.4/~. For the different modifications the dis- 
crepancy in the data over the 2.5/~ area was defined 
to be 

R = 2 ~  F w ~ t - F d , - y / ~  Fw~t+Fdry, 

and was equal to 0.255. On technical grounds, the 
initial 'dry' set lacked considerably many reflections 
(the area up to 4/~, showed only 2834 of 4224 possible 
reflections). We used these data in tests aimed at 
restoring the missing structure factors. 

We started with a 4/~ synthesis over 2852 reflec- 
tions (of 4224 in the independent part of the unit 
cell) with the coefficients Fd~y(S) exp[i~wet(S)], where 
F, try(S) were the amplitudes of the second, 'dry', 
modification, and ~wet(s) were the phases calculated 
from the atomic model for the 'wet' protein modifica- 
tion. Sections of the synthesis are shown in Fig. 6(a). 

The synthesis was of poor quality because it con- 
tained about two thirds of the reflections only, and 
its phases contained errors, being of the first 
modification, not the second. 
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Then we tried to determine the missing structure 
factors (both phases and moduli) through the condi- 
tion of the minimum of criterion (17). 

Theoretical frequencies were determined from the 
I I)0I K model (6)-(7), whose coefficients l g J k = l ,  {qO}~:=l 

were found from the base protein set (Table 1). The 
set does not include y-crystallin. Fig. 7 shows the "X 

\ 

\ 

Fig. 7. Simulated ( ), start ( - - - - )  and final ( --  x - - )  histograms 
for the dry form of 3,-crystallin IIIb. 

pOlK theoretical histogram { k /k= l ,  which corresponds to 
the starting synthesis of Fig. 6(a) and the histogram 
which represents the resulting synthesis with restored 
structure factors. Its sections are shown in Fig. 6(b). 

The authors thank A. G. Murzin and A. G. 
Urzhumtsev for valuable discussions and O. M. 
Liguinchenko for her help in preparing the manu- 
script. 

(a) 

(b) 

Fig. 6. (a) Sections z = 17/240-23/240 for the 4 A start synthesis 
for the dry form of y-crystallin IIIb; (b) the improved maps. 
(Lowest contours on both figures bound 30% of the unit-cell 
volume.) 
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Abstract 

The first part of this communication describes a simple 
procedure by which the non-centrosymmetric form of the 
tangent formula is adapted to incorporate the 'centrosym- 
metry constraint' for centrosymmetric structures, thus 
allowing refinement of phases uniformly distributed from 
0 to 27r to the expected values 0 or 27r. The convergence 
of the resulting formula is illustrated with two structures. 
In the second part, a modified tangent formula including 
the constraint based on the zero points of the Patterson 
function is derived. To do this, both the Cochran integral 
Sv p3 d V and the sum over all zero points of the Patterson 
function of p2 are expressed in terms of the phases of the 
strong E's. The modified tangent formula is then obtained 
assuming that the difference between the two corresponds 
to a large positive maximum for the correct phases. Finally, 
it is shown how the information supplied by the weak E's 
and by the zero points can be treated in an unified way, so 
that a combined tangent formula can be derived. 

Introduction 

As is well known, the integral (Cochran, 1952; Hauptman 
& Karle, 1953) 

V2 S P3(r) dr = large magnitude, (1) 
o 

including the 'positivity criterion' of the electron-density 
distribution, can be expressed as the sum of the triplets 

~ E-hEh'Eh-h, • (2) 
h h' 

0108-7673/91/010052-04503.00 

As shown by Debaerdemaeker, Tate & Woolfson (1985), a 
way of deriving the tangent formula (Karle & Hauptman, 
1956) 

~p(h) = phase of {~ Eh,Eh_h,} (3) 

is to assume that the true phase angles ¢(h) of the normal- 
ized structure factors correspond to a maximum of the 
double summation (2). However, by refining phases with 
the tangent formula, it is also possible to reach, besides the 
correct maximum, false maxima. This may happen for 
several reasons, such as the effect of space-group symmetry, 
size of the structure and special features in the atomic 
positions (Schenk, 1988). By using additional information 
e.g. the weak E's found from the diffraction experiment 
(Debaerdemaeker, Tate & Woolfson, 1985) or the minimum 
interatomic separation derived from the atomic size (Rius 
& Miravitlles, 1989), constraints can be added to (1) in 
order to reduce the number of such false maxima. In this 
communication, the constraints based on the centrosym- 
metry of the electron-density distribution and on the zero 
points of the Patterson function are investigated. 

The centrosymmetry constraint 

A special case of the conventional tangent formula results 
from introducing the centrosymmetry constraint explicitly 
in (1), i.e. in the form of an integral: 

I =  V 2 ~ p( - r )p2( r )dr .  (4) 
I) 

The integrals (4) and (1) will only be equivalent for a 
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