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Abstract 

An approach to direct phasing of low-resolution 
reflections is proposed. It is based on the generation 
of a large number of phase sets and selection of those 
variants whose electron-density-synthesis histograms 
are close to a prescribed standard. Classifying them 
into clusters and averaging them inside every cluster 
restricts their number to one to three usually, in which 
a phase set close to the standard is contained. The 
best variant can be recognized by the properties of 
its cluster. Test phasing of 29 low-resolution reflec- 
tions has resulted in a correlation coefficient of 0.94 
and a mean phase difference of 40 ° compared with 
the true phases. 

1. Introduction 

In previous years histograms corresponding to finite- 
resolution electron-density syntheses were shown to 
be a useful tool in macromolecular structure-factor 
determination (Lunin, 1986, 1988; Lunin & 
Skovoroda, 1990; Luzzati, Mariani & Delacroix, 
1988; Mariani, Luzzati & Delacroix, 1988) and 
refinement (Harrison, 1988; Zhang & Main, 1990). 

0108-7673/90/070540-05503.00 

Some methods of histogram prediction were sug- 
gested for proteins with unknown spatial structure. 
In this paper we discuss how histograms may be used 
to phase low-resolution reflections directly. 

The idea of the approach is very simple on the face 
of it. One generates many (e.g. random) trial phase 
sets and separates those which lead to histograms 
close to the predicted one. It would be reasonable to 
expect that if .the number of generated phase sets is 
large enough, one necessarily finds a variant close to 
the true one, which can be identified by a 'good'  
histogram of the corresponding synthesis. The actual 
situation is much more complicated, and there may 
exist several different phase sets leading to histograms 
close to the prescribed one. Since these histograms 
can always possess errors, we should consider all such 
variants as admissible. 

Cluster-analysis methods permit a more thorough 
study of the set of admissible variants. These are 
classified into subsets grouped about different sol- 
utions of the phage problem, which then are averaged 
to 'extract' some (two or three) possible phase- 
problem solutions. In our tests one of these extracted 
variants was found to be sufficiently close to the true 
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solution. Furthermore, it was possible to identify the 
cluster corresponding to the true solution because of 
its compactness. 

Test phasing of 29 low-resolution reflections for a 
model structure of two molecules of car- 
boxypeptidase A (Rees, Lewis & Lipscomb, 1983) 
resulted in a correlation coefficient of 0.94 and a mean 
phase difference of 40 ° compared with the true phases. 
The developed procedure was successfully used to 
phase 30/~ resolution reflections for an elongation 
factor G (Chirgadze, Nikonov, Brazhnikov, Garber 
& Reshetnikova, 1983). 

A similar approach was applied by Luzzati, 
Mariani & Delacroix (1988; Mariani et al., 1988) in 
their investigations of ordered phases of lipid-water 
systems. They checked all possible phase sets (for the 
centrosymmetric case) and chose the one resulting in 
the best histogram. However, since the possible num- 
ber of sets grows exponentially with the number of 
reflections, we had to proceed in another direction, 
which required less computation when searching for 
the variants. Also, because of possible errors in the 
predicted histogram we refused to seek an absolute 
minimum in the histogram discrepancy and intro- 
duced averaging in every cluster. 

2. Does a good histogram guarantee the correct 
structure-factor phases? 

2.1. Formulation of the problem and notation 
Let 

p°X(r)=lvl-' Y F~X(s) exp[i~p~X(s)] 
Isl--<~max 

X exp [-27ri(s, r)] (1) 

and {F~X(s)}, {~eX(s)} be the sets of structure-factor 
amplitudes and phases. We assume that all the ampli- 
tudes are known and are used to calculate the syn- 
theses below. 

Let a function p(r) be calculated at N grid points 
of a unit cell. Assume that the interval (Pmin, Pmax) 
of possible p values is divided into K parts (bins). 
We determine the frequency that the values of p(r) 
occur in the bins to be 

Uk = rig~ N, k = 1, 2 , . . . ,  K, 

where n k is the number of grid points with p values 
belonging to bin k. The set {Vk} of these frequencies 
is called here a histogram. Different approaches have 
been used to predict histograms of protein electron- 
density syntheses (Lunin, 1988; Lunin & Skovoroda, 
1990; Zhang & Main, 1990). In this paper we suppose 
that the histogram { Uk} corresponding to the synthesis 
p~X(r) is known and call it the 'standard'. 

The problem we are studying in this paper consists 
in finding structure-factor phases provided the ampli- 

tudes {F~X(s)} and standard histogram { vT, x} at a resol- 
ution of dmi, = 1/Smax are known. 

We say that some trial phase set {¢C(s)} results in 
the histogram {v~}, by which the histogram corre- 
sponding to the synthesis calculated from the ampli- 
tudes {F~X(s)} and phases {~¢(s)} is meant. The first 
question we try to answer is: can we be sure that the 
trial phase set {~C(s)} is close to the exact one {~eX(s)} 
if the trial histogram {v~} is close to the standard? 
To answer this question, we should define more for- 
mally what are close histograms and close phase sets. 

2.2. Criteria of histogram discrepancy 
To describe the discrepancy between two his- 

tograms, we use the value 

K 

Oh = { .V})=  E 
k = l  

We call this the distance between histograms {vT,} 
and { v~,X}. [For all syntheses of a given resolution we 
take the same interval (Pmin ,Pmax)  and fix its 
decomposition into bins.] Of course, other measures 
of histogram closeness may be introduced, such as 

K 

G = Y. x. 
k = l  

Our tests have not revealed any serious advantage of 
one over the other. 

2.3. Criteria of phase-set discrepancy 
The aim of solving the phase problem is to produce 

an interpretable synthesis. Equal phase errors in weak 
and strong reflections result in very different synthesis 
defects. This is especially appreciable when the syn- 
thesis is calculated with a small number of structure 
factors. That is why one should take into account not 
only differences between phases but also the values 
of the corresponding amplitudes when comparing 
phase sets. Examples of weighted phase-discrepancy 
criteria are the correlation coefficient 

6(pc, pox)= y, F (s) cos F (s) 

(its maximum value is 1 at pC= pCX, minimum is -1  
at pC= _p~X, and the mean value is 0) and the 'dis- 
tance' between syntheses 
G(pc, pox) 

={fv[PC(r)-peX(r)]2 dVr/fv[peX(r)]2 dVr} 1/2 

= ( 2 - 2 d )  '/2 

(its minimum value is 0 at pC= peX, maximum is 2 at 
pC= _pex, and the mean value is 21/2). 

When solving the phase problem ab initio, we 
should keep in mind that phase sets should be reduced 
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Table 1. The distribution of the values Qh and Q~ for test phase sets (the numbers of variants are given) 

Qs 0.3 0-4 0.5 0 .6  0.7 0.8 0 .9  1.0 1.1 1.2 

Qh 
0.075 1 0 0 0 0 0 0 0 0 0 
0.100 1 7 14 6 4 0 5 27 10 0 
0-125 5 29 86 103 42 0 44 305 119 0 
0-150 1 70 284 359 160 3 138 1290 689 2 
0"175 4 84 531 846 428 24 451 3384 2146 9 
0"200 1 93 701 1523 872 110 848 6301 4556 71 
0-225 1 52 727 2139 1680 269 1502 9732 7571 191 
0"250 0 32 685 2812 2852 569 2123 12 326 10 144 312 
0"275 0 27 610 3265 4398 1220 2746 13 828 11 593 508 
0-300 0 6 486 3594 5114 2235 2876 13 752 11 107 553 
0"325 0 2 311 3645 7310 3298 2740 12 483 9511 477 
0"350 0 2 186 3186 8633 4763 2385 10 359 7000 303 
0"375 0 0 78 2504 8842 5995 1929 7784 4781 149 
0-400 0 0 52 1723 8476 7495 1465 5157 2887 49 
0"425 0 0 26 1145 7424 8358 1383 2950 1716 26 
0.450 0 0 8 651 6212 8566 1520 1492 891 10 
0.475 0 0 3 377 4527 8204 2001 658 453 1 

to the same origin and enantiomorph before com- 
parison. All functions of the form 

Pt,~c = p C ( K r + t ) , t ~ T , K = + l  

(with T the set of all vectors in the unit cell) will have 
the same set of structure-factor amplitudes and the 
same histograms. Therefore, to compare pC(r) with 
peX(r) we should shift pC(r) into the coordinate system 
where it is as close to p~X(r) as possible. We define 
the 'crystallographic' distance between syntheses 
pC(r) and p~X(r) [or, equivalently, the weighted 
crystallographic distance between phase sets {~C(s)} 
and {~X(s)}] to be 

Qs min min " c p~X). = Q~(pt,,,, 
t~T K = ± I  

If peX(r) has a nontrivial symmetry group, the set T 
of possible shifts may consist of a finite number of 
vectors. For example, for the group P2~212~ we should 
check 16 variants of origin and enantiomorph to 
calculate Qs. 

2.4. Test structure 

For test purposes we used a dimer built from two 
atomic models of carboxypeptidase A (Rees et al., 
1983) and located without self-intersections in a unit 
cell with P212t2t symmetry. This test was connected 
with the investigation of the elongation factor G 
(Chirgadz¢ et al., 1983), therefore the size of the test 
object and the unit-ceU parameters (76 x 106 x 116 ,A,) 
were the same as for factor G. The dimer model was 
used to calculate amplitudes and phases of structure 
factors. In the test the amplitudes played the role o f  
the known {FeX(s)} values, unlike the phases that 
were used only to check the answer. 

2.5. Connection between histogram and phase-dis- 
crepancy factors 

The test consisted in generating a large number 
(400 000) of random phase sets at a resolution of 30 

(29 reflections), calculating the values Qh and Q~ for 
every set and analysing the variant distribution with 
respect to these two parameters. Table 1 shows some 
results of the test. We can see that the phase sets 
closest to the standard histograms (Qh < 0.1) include 
variants both close to the exact set and very far from 
it (Qs ~ 1-0). So the answer to the question with which 
§ 2 was begun is negative - a good histogram does 
not guarantee a correct synthesis. 

3. Selection of particular phase-problem solutions 
from a set of admissible variants 

3.1. The cluster analysis 

A more thorough analysis of Table 1 allows 
classification of all variants with good histograms into 
two groups: those which are close to the exact phase 
set (Qs "" 0.5) and those with Qs - 1.0. When differen- 
ces Qh between the calculated and the standard his- 
tograms increase, the groups and the deviation of 
values Q~ from the mean grow, and, when Qh becomes 
large enough, the groups coalesce. Such a picture 
allows us to infer that there should exist at least two 
different phase sets resulting [together with the pre- 
scribed amplitudes {FeX(s)}] in a good histogram (the 
variants with Q s - 1 . 0  may show an even greater 
diversity of phase sets). Cluster analysis may give 
here a clearer picture. 

For a more precise analysis we took 39 variants 
P l ,  P 2 , -  • • ,  P39 with good histograms (Qh < 0.1) and 
calculated the matrix of distances Q,(pj, Pk) between 
them. The procedure of cluster analysis is to join 
together close variants [those with Q~(pj, Pk) < e for 
a given e]. It is clear that, if e increases, the number 
of such clusters decreases but the number of variants 
in each of them increases. Fig. 1 illustrates the process 
of cluster organization. (The order in which the 
variants are shown in Fig. 1 is a simplified tree rep- 
resentation; it is, of course, not the order in which 
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they were generated.) The analysis was made by the 
P 1 M  routine (Dixon, 1977). 

3.2. Picking out a particular solution 

Fig. 1 reasonably suggests that all 39 variants 
shofild be separated into two clusters A and B, con- 
sisting of 21 and 18 variants, respectively. In fact (see 
Table 2), cluster A only included variants close to 
the true solution (Qs varied from 0.23 to 0-66) and 
cluster B included phase sets dissimilar to the flue 
one (Qs > 0.89). It should be emphasized that this 
division was made with the use of the intervariant 
distances matrix {Qs(Pj, Pk)} only and took no 
account of how far the variants actually were from 
the exact solution. 

To choose a 'representative member' from a cluster, 
the variants were averaged in the cluster. For every 
structure factor we defined the 'best' phase q~beSt(s) 
and the figure of merit re(s) to be 

M 
m(s) exp[i(pbeSt(s)]= M -1 Y. exp[kpj(s)]. 

j = l  

Here M is the number of variants in the cluster (it 
is 21 for cluster A) and ~0j(s) is the value of the 
s-indexed phase in the j th phase set. Naturally, all 
phase sets were reduced to the same coordinate 
system before averaging. For this purpose, one of the 
cluster variants was taken as basic, pbas, and for others 
coordinate systems and enantiomorphous modifica- 
tions were varied so as to produce a minimal possible 
value of the distance Qs(p has, pj). The syntheses pbest 
and pbest w e r e  calculated from the exact amplitudes 
{F~X(s)} and phase sets {~bAeSt} and {q~b~st}, resulting 
from averaging in clusters A and B. 

Fig. 2 shows sections corresponding to syntheses 
pb~t(r), pbeSt(r) and p°X(r). Table 2 lists mean values 
of figures of merit and phase differences for phase 
sets made by averaging in clusters A and B. One can 
see from this table that cluster A (corresponding to 
the true solution) has a large mean figure of merit 

° (is 
.2 

t~ 

! 
Fig. 1. Organization of  admissible variants into clusters in the test. 

Table 2. Characteristics of  test clusters 

Cluster A Cluster B 
Number of variants 21 18 
Distance Qs of cluster elements from the 

true phase-problem solution 
min. 0.23 0.89 
max. 0.66 1.12 
average 0.45 0.97 

(m)s 0-52 0.41 
(Qs(pb~St, pj))j 0-42 0.54 
Qs(pbest ,  pex) 0"34 0"95 
c(pbest, peX) 0"94 0"55 

<l,p~°~'-,fXl>, (°) 40 71 

and a small mean value for the distance between 
variants in the cluster and the averaged one, compared 
with cluster B. 

Our tests with other objects gave similar results. So 
we may infer that 

(i) generating random phase sets and selecting 
those with synthesis histogram close to the prescribed 
one; 

(ii) organizing the chosen variants into clusters on 
the basis of the distance matrix; and 

(iii) averaging the variants inside every cluster 
restricts the number of possible phase-problem sol- 
utions. The true solution is sufficiently close to one 
of the selected variants and can be identified by its 
cluster's properties. 

4. Direct phasing of 30 ~, reflections for the elongation 
factor G 

The spatial structure of the elongation factor G 
from Terrnus termophilus has been investigated at the 
Protein Research Institute and the Research Comput- 
ing Centre in Pushchino (Chirgadze et al., 1983). The 

(b) 

Fig. 2. The section z = 6 / 4 0  for syntheses: (a) peX, (b) pbfft, 
(c) p~'~. 
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protein crystals belong to space group P2~2~2~ and 
have unit-cell parameters about 76 × 106 × 116 A. 

4.1. Standard  histogram simulation 

The method suggested for histogram prediction by 
Lunin & Skovoroda (1990) gives acceptable results 
at medium and high resolution. However, the quality 
of predicted low-resolution histograms is not always 
satisfactory. That is why we simulated 30 A resolution 
histograms by another method similar to the use of 
a homologous model (Lunin, 1988). 

The dimer model mentioned above may be located 
in the unit cell differently. We chose three variants 
of model packing and calculated histograms for the 
corresponding 30 A syntheses. These histograms were 
sufficiently close to one another (distances Qh 

Qs 

m| 

between the histograms did not exceed 0.1). We 
phased structure factors three times, each time using 
a new one from the three histograms to separate phase 
sets. Then we generated phase sets with the use of 
the histogram averaged over the three versions. All 
four runs gave similar results. A brief description of 
the fourth run is given below. A more detailed report 
on the G-factor structure determination will be pub- 
lished separately (Chirgadze, 1990). 

4.2. Generation o f  variants and cluster analysis 

In this run we generated 500 000 random phase 
sets and separated 44 of them resulting in best his- 
tograms (Qh < 0" 125). Fig. 3 illustrates the process of 
cluster formation. Unlike Fig. 1, here we could separ- 
ate confidently only one cluster of 18 phase sets. Our 
attempts to organize other clusters failed because of 
small numbers of variants and large spread among 
them. Averaging 18 variants in the cluster obtained 
resulted in phases with a mean figure of merit of 0.54. 
The deviation of variants in the cluster from the mean 
value was Qs = 0.46. 

Fig. 4 shows a fragment of electron-density syn- 
thesis for the elongation factor G at a resolution of 
30/~,. This synthesis agrees with the results obtained 
by other methods (Chirgadze, 1990). 

The authors are grateful to G. N. Borisyuk for 
valuable discussions and for her help in using the 
BMDP package and to O. M. Liguinchenko for her 
assistance in preparing the manuscript. 

Fig. 3. Organization of admissible variants into clusters for the 
elongation factor G. 

Fig. 4. A fragment of a directly phased 30/~ electron-density 
synthesis for the elongation factor G. 
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