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Abstract

A low-resolution Fourier synthesis is thought to show a
molecule as a compact region of a high electron density.
As a consequence, the number of such regions, chosen at
a proper cut-off level, should be equal to the number of
molecules in the unit cell. This hypothesis may be used
as a basis for selection criteria in multisolution ab initio
phasing procedures. However, when working with a
small number of reflections, this hypothesis may break
down. The suggested Fourier-synthesis decomposition
explains some reasons for failure and provides a
connectivity-based procedure for the determination of
macromolecular position in the crystal unit cell and the
phasing of several low-resolution reflections. The
simplest decomposition consists in separating the
reflections into two sets according to whether their
phases do or do not depend on a permitted origin shift.
It is shown that the partial Fourier syntheses corre-
sponding to these subsets are simply a half-sum and a
half-difference of the initial electron-density distribu-
tion with its shifted copy. Therefore, they display the
true images overlapped with the shifted ones (or with
shifted and additionally flipped copies for the latter
synthesis). The paper generalizes the decomposition for
the case of a finite subgroup of the group of permitted
origin shifts and reveals the role of one-phase sem-
invariants.

1. Introduction

The development of ab initio phasing methods applic-
able at very low resolution (VLR) is stimulated by an
increasing interest by crystallographers in large macro-
molecules and their complexes. Standard approaches
such as isomorphous and molecular replacement,
multiwavelength anomalous diffraction (MAD) or
direct methods while demonstrating success on the way
to such structures (Luger et al., 1997; Ban et al., 1998;
Miller & Weeks, 1998; Sheldrick, 1998; Woolfson, 1998)
are as yet far from routine tools. The goal of VLR
phasing methods is to find phases for a relatively small
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number of reflections and these methods do not pretend
to give directly an image interpretable in terms of
individual atoms or even residues. The information that
can be extracted from low-resolution Fourier syntheses
is confined mostly to the position of the object in the
unit cell and its outlines. These data may be used as a
starting point for the following phase-extension proce-
dures, which bring new structural details and are very
useful when using information from alternative methods
like electron microscopy.

VLR phasing methods differ between themselves by
the search procedure and by the complementary infor-
mation (or hypotheses) used to recognize suitable phase
sets. For one type of procedure, the search is carried out
in a parameterized phase space where all phase sets are
calculated from some kind of simple macromolecular
model. Basically, they are models composed from a set
of spheres (or pseudoatoms or globs) and contain one
(Podjarny et al, 1987; Harris, 1995; Andersson &
Hovmodller, 1996), a small number (Podjarny et al., 1987,
Lunin et al., 1995, 1998a) or a large number (Subbiah,
1991, 1993) of them. Such approximations are reason-
able at VLR, and the positions of the spheres can
sometimes be determined from the best correspondence
of calculated structure-factor magnitudes to the
experimental ones. Pseudoatom approximations are
useful in electron crystallography as well (Dorset, 1997;
Dorset & Jap, 1998).

Alternatively, all phase sets (or a representative
ensemble of phase sets) can be checked in order to
choose the best one according to some criterion. Such a
representative ensemble can be chosen randomly
(Lunin et al., 1990) or as some ‘regular grid’ in the
configuration space of all phase sets, e.g. constructed
using error-correcting codes (Woolfson, 1954; Gilmore et
al., 1999). The key problem in such approaches is the
choice of a selection criterion that allows identification
of the true phase set among all the considered ones (in
classical direct methods, these criteria are called figures
of merit, FOMs). Traditional FOMs (Gilmore, 1998) are
not always applicable at low resolution when the
assumptions forming the basis of these criteria fail.
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Some new criteria, e.g. ones using the specificity of
electron-density histograms (Lunin et al., 1990; Lunin,
1993) or likelihood-based criteria (Bricogne & Gilmore,
1990; Lunin et al., 1998a) were found to be more
appropriate when working at VLR.

It was found that different approaches of both types
being applied to VLR data have a general feature, the
presence of multiple minima (or maxima, in relevant
cases) of the search criteria. These minima regions are
similar in size and depth, and the correct solution does
not necessarily belong to the vicinity of the deepest
minimum. In order to overcome this difficulty, a special
technique was suggested (Lunin et al, 1990, 1995,
1998a), which is based on the cluster analysis of all
reasonably good candidates for solution rather than a
few best ones. This technique reduces the phase ambi-
guity to a choice among a small number of alternative
phase sets. In order to make this last choice, two addi-
tional criteria were successfully used in the course of
VLR ab initio phasing of a ribosomal 50S particle from
Thermus thermophilus (Urzhumtsev et al., 1996; Lunin et
al., 1998b), namely generalized likelihood (Lunin ez al.,
1998a) and a topological criterion based on a connec-
tivity analysis of the density distribution.

The connectivity properties were used for many years
to estimate qualitatively electron-density maps. Baker et
al. (1993) formalized this in a quantitative criterion for
middle- or high-resolution maps. This criterion is based
on the observation that a well phased Fourier synthesis
reveals extended continuous regions of high electron
density corresponding to polypeptide and side chains
and that, on the contrary, the presence of a large number
of small isolated ‘drops’ indicates ill defined phases. A
minimal principle was formulated as follows: the larger
are the connected components in the synthesis and the
less is their number, the better are the phases. A
modification of this principle extended for skeletonized
maps was recently tested by Mishnev (1998). At VLR,
this minimal principle can hardly be applied in the usual
form because a poorly phased synthesis shows merged
molecular images rather than multiple drops. As is
discussed in §2, the principle could be replaced by one
saying that the region of high density of a VLR synthesis
must contain as many roughly equal connected regions
as the number of molecules in the unit cell and that these
regions must be as large as possible while being sepa-
rated. Nevertheless, even in such a modified form, the
connectivity criterion may not be applicable if a too
small number of reflections is taken which is necessary
nowadays to perform an exhaustive phase search. These
changes in connectivity characteristics at VLR may be
explained to some extent in the frame of a Fourier-
syntheses decomposition as discussed in §§3 and 4. For
every permitted origin shift, the reflections are sepa-
rated into two sets according to the property of their
phase to be independent of this shift or not. The partial
Fourier syntheses calculated for these two sets of
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reflections are shown to be simply a half-sum and a half-
difference of the initial electron-density distribution
with its shifted copy. The former, origin-independent,
partial synthesis necessarily shows a superposition of the
correct molecular image with its shifted copy. This
means that, when the reflections of the first type domi-
nate in the synthesis, the number of macromolecular
images in the synthesis tends to be greater than the
number of macromolecules, the images merge and the
topological criterion formulated as above is useless. The
latter, origin-variable, component represents some kind
of difference synthesis with a correct number of shar-
pened individual macromolecular images but possibly
deformed; this happens if the centre of the shifted and
flipped image is close to one of the true object images. It
should be stressed that this synthesis may have desired
connectivity characteristics even when the full syntheses
does not reveal them. Therefore, the procedures of a
connectivity-based search applied to the origin-variable
component rather than to a full synthesis may provide
one with the true object position and reasonable values
for origin-variable phases.

A cumulative effect of several permitted origin shifts
is considered in §4. In this case, the special role is played
by seminvariant reflections which do not change phase
values under all permitted origin shifts and are of special
interest in classical direct methods (Giacovazzo, 1980).

The main ideas of the Fourier-synthesis decomposi-
tion are illustrated in §5 by the example of an artificial
simplified object. The seminvariant density decomposi-
tion analysis was developed in the course of the phasing
of a ribosomal 508 particle (with the use of experimental
data obtained in the laboratories of A. Yonath) which
will be discussed elsewhere. The test object used in this
paper displays the particles packing in the unit cell and
their features important for the analysed problem.

2. Connectivity analysis
2.1. Connectivity-analysis procedure

A mask of the molecular region €2 is usually defined
as a region in the unit cell which contains the points with
highest Fourier-synthesis values above some cut-off
level k. This level depends on the magnitude scale and
on the resolution of the synthesis.

When operating with a high-resolution synthesis, « is
usually chosen high enough and the mask reproduces,
with more or less detail, the trace of the polypeptide and
side chains. At such a resolution, a mask of the mol-
ecular region consisting of a large number of small
components usually indicates a noisy poorly phased
synthesis, contrary to the case with a few large
connected components. Thus, the number M of the
connected components in €2 may be used as a figure of
merit of the phase set (Baker et al., 1993; Mishnev, 1998)
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and the decrease of M (probably up to some limit) may
be considered as the indication of the progress in
phasing.

For the low-resolution syntheses, the chains are not
distinguishable and the mask represents the shape and
the position of the macromolecule rather than fine
molecular details. This molecular region mask 2 may
correspond to a lower « value and occupy a larger share
of the unit cell than in the case of a higher-resolution
‘chain’ mask. When analysing VLR syntheses, one
expects that for a reasonable cut-off level « the
connected components at this synthesis correspond to
the masks of symmetry-related copies of the molecule
and therefore the number of these components M(k)
should be equal to the number N, of molecules in the
unit cell. Obviously, this is not the case when the cut-off
level « is chosen too low and the molecular images
merge together. It can also be not true if « is taken too
high and €2 can contain several local maxima of density
per molecule rather than the connected molecular
envelope.

The topological analysis of an electron-density
distribution p(r) may consist in the calculation of the
size and the number of connected components in the
regions 2 corresponding to different cut-off levels. It is
convenient to introduce a parameter p which varies with
an equal step in the interval 0 < p < 100% and to define
the levels «, and corresponding €2, regions,

Q,={r:p(r) >«,}, )

in a such way that every £2, region has the relative
volume equal to this p value:

volume (£2,)
——— x 100% = p. )
unit-cell volume
An example of the application of the connectivity
analysis is shown in Table 2 (Appendix A). Its use in a
phase-determination process is discussed in §5.

2.2. Connectivity-based VLR phasing

At VLR, the electron-density distribution, in general,
is higher at the centre of the molecular image and lower
at the molecular border. Therefore, the principal effect
of phase errors is losing the envelope and merging the
molecular images in a Fourier synthesis while a higher
density at the centre of the molecules is kept until the
phase error reaches some limit. The higher the phase
error, the smaller is the size of the isolated regions,
corresponding to N,,, macromolecules in the unit cell.
For any synthesis, we can define the value of the par-
ameter p"**(Npo1) as the highest relative volume p such
that the €2, region consists of exactly Ny, similar
connected components. If two syntheses are calculated
with the same amplitudes and with different phases, one
can expect that the worst of them has a smaller
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P (Nmol), Which thus can be used as a criterion to
judge alternative VLR phase sets in an ab initio struc-
ture determination. Indeed, it was extremely useful for
the phasing of the 50S ribosomal particle from Thermus
thermophilus (Lunin et al., 1998b).

When the number of reflections is relatively small
(e.g. in the search for the phases of a few strongest VLR
reflections), it is possible to carry out an exhaustive
search and to check all possible phase combinations.
(Obviously, some reasonable sampling should be
applied to the phases of noncentrosymmetric reflec-
tions.) The maximization of p™**(N,,.) could be used as
a selection criterion in this search. Unfortunately, a
synthesis calculated with a small number of reflections,
even when their magnitude and phase values are exact,
can lose desired connectivity properties (for example,
see Fig. 1) and the suggested procedure may fail. Some
possible reasons behind this as well as a way to over-
come the problem are discussed below.

Fig. 1. Fourier syntheses for the test object: (a) synthesis calculated
with all 52 reflections within the resolution zone d > 60 A. (b) The
11 strongest VLR reflections (S, set) are used. X sections are shown.
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3. One-shift density decomposition
3.1. Density decomposition

Let S be a set of reflections used to calculate a studied
Fourier synthesis p(r) in some coordinate system:

p(r) = (1/V) th Fy exp(igy) exp[2mi(h, )] (3)

While structure-factor amplitudes are invariant for a
shift of the origin of this coordinate system, it is not
generally the case for the phases. The origin shift by the
vector u results in the shift 277(h, u) of the phase ¢y,
According to this property of changing phase values, for
every particular shift u the set S can be split into two
parts:

S=S,US,,. @)

Here, S,; stands for reflections that are invariant under
the origin shift, while the set S,, consists of reflections
whose phases vary with the shift u. It follows from the
definition that

(h,r) =0| forhe S )

mod 1

and

(h, ) # 0] h0a1

The decomposition (4)—(6) induces two complementary
partial Fourier syntheses:

Poi(®) = (1/V) > Fy expligy) exp[2mi(h. )] - (7)

heS

forhesS,,. (6)

oi

Poy(®) = (1/V) 3 Fyexpligy,) exp[2mith, r)],  (8)

S0y
which forms two parts of the p(r) distribution:
,O(l') = poi(r) + pov(r)' (9)

Although the decomposition (7)—(9) may be performed
for an arbitrary origin shift, it has some important
features when u is a permitted origin shift, i.e. one that
does not change the symmetry properties of p(r) (see
§4). The most important feature in this case is that the
partial syntheses p,(r) and p.,(r) are simply the half-
sum and half-difference of the full synthesis p(r) and its
shifted copy p(r — u):

Poi = 3[p(X) + p(r — w)] (10)
Pov = 5[p(X) — p(r — w)]. (11)

This follows from the theorem 1 proven in Appendix B.

The former synthesis (10) gives an overlapped picture
of two shifted copies of the true image [by the true one
we mean the image presented in the full synthesis (3)].
This is governed by origin-invariant (o.i.) reflections
from the §; set. If such reflections dominate in a small
set of low-resolution reflections, then, owing to extra
molecular copies, it may result in merged globs at the
electron-density map rather than in separated molecular
images. The latter synthesis (11) gives the true image
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surrounded (and, possibly, distorted) by its flipped and
shifted copies (Fig. 2). This is governed by the origin-
variable (o0.v.) reflections from the S,, set. It does not
induce the merging of images but may provoke image
distortions if one of the symmetry-related flipped images
is in the vicinity of the true one.

It must be noted that the decomposition (4)—(6) of the
set of reflections into two parts is not a unique way to
separate the structure factors. The advantage of this
decomposition is that the partial Fourier syntheses (7)-
(8) have a simple interpretation (10)—(11) in terms of the
whole electron density p(r). Other decompositions of
this type are considered in §4.

3.2. Connectivity-based determination of VLR origin-
variable phases

The origin-variable partial Fourier synthesis does not
contain reflections that cause the overlapping of the
image with u-shifted phantoms. So this partial synthesis
may reveal sharpened and isolated compact regions
separated by the equal but negative ones. Therefore, the
origin-variable part p,,(r) of the electron density may be
more suitable for connectivity-based ab initio phasing
than the p(r) while two important features of this
phasing must be emphasized. Firstly, the o.v. partial
synthesis (8) by no means represents the true image of
the object. It represents some artificially constructed
image, positioned similar to the true one and possessing
the same o.v. phases. As a consequence, only the posi-
tion of the object in the unit cell and a subset of origin-
variable phases could be found in such a search.
Secondly, the properties of p,,(r) may depend strongly
on the choice of the permitted origin shift u. If the
position of the u-shifted negative image is close to the
position of one of the symmetry-related positive images,
then the difference image may be completely destroyed
and the phasing procedure may fail. Usually it is not
known in advance how the shifted copies are arranged
with respect to the initial ones. Nevertheless, different
permitted origin shifts can be tried in the hope that at
least one of them leads to success.

— p(l‘)
poi(r)
= Poulr)

Fig. 2. One-dimensional example of density decomposition corre-
sponding to an origin shift of 1/2.
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4. Multiple-shifts density decomposition

In this section, a more general case of density decom-
position is studied. All considered distributions are
supposed to be periodical ones so that all equalities are
considered implicitly by modulo integer.

4.1. Permitted origin shifts.

Let F:{(Rv,tv)}’j;§ be a crystallographic space
group, I'" = {(I,t,)}},—, its translation subgroup and
(Ry, t;) = (I, 0) the identical transformation. (For the
space group with primitive unit cell, the subgroup
I consists of the identical transformation only.) Two
real-space vectors u and v are equal by modulo I
(u = V|,oa ), if they differ by a translation from I':

u=v|, 4 ifandonlyifu—v=t,

forsome 0 < u<m —1. (12)
Permitted (or allowed) origins may be defined in terms
of structure-factor properties as ‘the points which, taken
as origins, retain the same functional form of the struc-
ture factor’ (Giacovazzo, 1974). The permitted origins
are related to each other by the permitted translations
or shifts. Since originally the symmetry of a space group
is defined in the real space, an equivalent and more
formal introduction of this concept may be given (Lunin
& Lunina, 1996) by the following two definitions:

Definition 1. A function p(r) possesses the T
symmetry if

o(R,r+1t,) = p(r) forallr € R® andall0 <v<n —1.
(13)

Definition 2. A vector u is an origin shift permitted for
the group I' if it retains the [" symmetry, i.e. any function
p(r) possesses the I' symmetry if and only if p(r — u)
does.

The necessary and sufficient condition for u to be a
permitted origin shift may be formulated as the
following (Giacovazzo, 1980; Lunin & Lunina, 1996):

Lemma 1. u is a permitted origin shift if and only if

Ru=u|,~ forall0<v<n-—1. (14)

The permitted origin shifts form a group I'"®. This
group may be an infinite (e.g. for triclinic or monoclinic
space groups) or a finite one (for example, for ortho-

rhombic groups).

4.2. Shift-dependent reflections

A shift of the origin by a vector u has no influence on
the structure-factor magnitudes but changes the phase
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of a reflection with the index h by 2sw(h, u). Thus, the
phase remains unchanged if (h, u) = 0|

mod 1+

Definition 3. Reflection with the index h and the
corresponding phase ¢y, are u-invariant if (h,u) = 0|4,
and is w-variable otherwise. If I'y is a subgroup of
a group of permitted origin shifts, a reflection is
[o-invariant if it is invariant with respect to every shift
from the I'y group.

It follows from this definition that the phases of
['p-invariant reflections do not change their values for
any origin shift from I'y. In particular, the phases of
the reflections that are invariant with respect to all
permitted origin shifts are one-phase structure sem-
invariants.

4.3. Density decomposition

Let I'y = {(I, u}XZ be a finite subgroup of the group
of permitted origin shifts and u, = 0. Any function p(r)

can be represented formally as

PE) = po(®) + 00y (®), (15)
where
pu(®) = (1/K)p(e) + <1/1<>K§p<r —u) (16)

Pou(r) = [(K = 1)/K]p(r) — (1/K) Ké ple—uy).  (17)

In this decomposition, the origin-invariant part p;(r) is
the sum of K equally weighted shifted copies while the
origin-variable part p,,(r) is formed by the original
image distorted by shifted and flipped images taken with
a relatively low weight. The ratio of the weights of these
components increases linearly with the size of the group
['y. Fig. 3 illustrates the density decomposition in the
one-dimensional case.

It is important to note that, as follows from the defi-
nition, the functions p(r) and p,,(r) have the same
symmetry as o(r) has and that

—— p(I’)
poi(r)
— Po(D)

Fig. 3. One-dimensional example of density decomposition corre-
sponding to the {0, 1/3,2/3} group of origin shifts.
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Poi(r —u,) = pyi(r) forallu, € I'. (18)

4.4. Fourier-series decomposition

The density decomposition (15)—(17) in the real space
is coupled with the Fourier-series decomposition as is
established by the following theorem 2 (for the proof see
Appendix C).

Theorem 2. Let T'y = {(I, u,)}*", be a finite subgroup
of the group of permitted origin shifts (u, = 0) and the
reciprocal space be split into I'j-invariant and I';-vari-
able parts:

Sy(Ty) = {h: (hu)=0forallc =0,...,K —1} (19)
Sov(Iy) ={h:(hu,)#0 forsomex =0,...,K—1}.

(20)
If

o(r) = (1/V) ; Fy exp(igy) exp[27i(h, r)] eay)

and the functions p.;(r) and p,,(r) are defined by (16)
and (17), then

P6i(X) = (1/V) ) SZ_(F )Fh exp(ipy,) exp[2mi(h, ¥)]  (22)
and
P = (1/V) > F,exp(ip,) exp[2mi(h, r)]. (23)

heS, (o)

This theorem shows that p;(r) is simply a part of the
p(r) Fourier series calculated over all Ty-invariant
reflections and p,,(r) is the corresponding sum calcu-
lated over the complementary subset. In particular, if I'y
is the group of all permitted origin shifts, the Fourier
series for p,(r) is formed by the reflections possessing
seminvariant phases. This is why formulae (22)-(23) are
called the seminvariant density decomposition. All
considerations of §3 are applicable to the decomposition
(22)-(23).

5. Test example of the seminvariant density
decomposition

The following simplified model example is chosen to
illustrate transparently the ideas of the decomposition
discussed above. The test calculations were performed
with model data simulating a low-resolution analysis of a
large macromolecular complex (Appendix A1). It can be
mentioned that the seminvariant density decomposition
study was originated from the structural analysis of the
H50S ribosomal particle (data provided by A. Yonath),
these results will be discussed elsewhere.

The exact 60 A resolution synthesis (52 independent
reflections) shows the right number of molecular images
in the unit cell (Fig. 1a). Unfortunately, this number of
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reflections is too high to perform an exhaustive search
using the connectivity as the selection criterion. Such a
search is feasible for a smaller number of reflections, e.g.
for 11 strongest reflections at this resolution. An attempt
to find the correct crystallographic image with such a
data set failed which was not surprising as the syntheses
calculated with these 11 structure factors (even when
their values are exact) does not show the right number
of molecules (Fig. 1b). The seminvariant decomposition
analysis explains this behaviour. The phases of most of
these strongest reflections are seminvariants which
makes the phantom images quite strong in this case.

In order to get an object possessing more favourable
topological properties, the origin-variable part p,(r) of
the Fourier synthesis was studied separately for three
independent permitted origin shifts (Appendix A2).
Table 2 represents the results of the connectivity analysis
for them and shows that the shift t, = (1/2, 0, 0) only
provides the desired connectivity characteristics
compatible with those of the full 60 A-resolution
synthesis. An attempt to find the phases of nine origin-
variable reflections corresponding to t; using the
exhaustive connectivity-based search (with w/4, 37/4,
Sm/4, 7m/4 sampling for noncentrosymmetric phases)
allowed definition of phases possessing an 84% phase-
correlation coefficient with respect to the exact phases.
Sections of the corresponding exact and ab initio phased
syntheses are shown in Fig. 4.

It should be emphasized that not every permitted
origin shift allows the desired connectivity character-
istics of p,,(r) to be obtained by means of the decom-
position (7)—(8). This is illustrated by Figs. 5 and 6. The
presence of shifted and flipped images at p,,(r) distorts
the original one and the greater is the overlapping the
stronger is the distortion. It is not known in advance how
large the overlapping is for a particular origin shift.
However, it is possible to try to phase origin-variable sets
corresponding to different shifts and to select the one
resulting in the best connectivity characteristics of the
found map. Naturally, when the phases are found for
some subset of reflections, it is possible to fix them and to
repeat the phasing procedure for an extended phase set.

6. Conclusions

The decomposition analysis explains the reasons for the
loss of the desired connectivity and suggests a way
to recover necessary features. The connectivity-based
phase search might be performed with the subsets
composed of the origin-variable structure factors and
not with the full data set. The number of such subsets
depends on the number of possible choices of the origin.
If for one of the permitted origins the initial and shifted
images are not strongly superimposed, the origin-
variable part of corresponding synthesis shows the
contrasted molecular position of a single macro-
molecular object in the crystal and the connectivity
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principle may work now. In the test case discussed in §5,
this information was sufficient to solve the problem for
one of the shift-independent phase sets and not for the
set of strongest reflections. Even if the shape of the
molecule is perturbed, this information can be important
to identify the correct phase subset and to get pre-
liminary packing formation. Moreover, seminvariant
decomposition can also predict a way in which the image
is perturbed by overlapping the original and shifted
copies.

APPENDIX A
Al. Test object

The main goal of the suggested method is the phasing
of very large macromolecular complexes. Therefore, a
test object was constructed to simulate a large ribosomal
particle. The envelope was formed by five spheres
centred at the vertexes of a pyramid with a square base.
The radii of spheres was chosen as 55 A, the base side as

o, ©

77 0, ‘

{2

AR 4"‘{-”:"' 9

Fig. 4. Origin-variable part p,,(r) corresponding to the origin shift
(1/2,0,0). Nine VLR reflections (S, set) are used, X sections are
shown. (a) Exact phases; (b) phases found by the connectivity-based
search.
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60 A and the pyramid height as 60 A (Fig. 7). This
envelope was placed without overlapping in the unit cell
with the parameters 210 x 300 x 573 A and the
symmetry space group (222, simulating the real
experimental data. Eight symmetry-related envelopes
per unit cell occupied about 52% of the unit-cell volume.
The envelopes were filled with dummy atoms. The
magnitudes and phases of the structure factors calcu-
lated from this model were used as the observed values
of structure-factor magnitudes and the exact phases.

It is worth noting that at very low resolution the
structure factors calculated from the solvent content of
the unit cell are nearly proportional to structure factors
corresponding to the protein part of the unit cell
(Urzhumtsev & Podjarny, 1995). So the absence of the
solvent part in the calculated structure factors does not
produce principal differences and results in the scale
factor only, which is not important when studying
topological properties.

Fig. 5. Fourier syntheses for: (a) p(r) (black) and p(r — u) (grey); (b)
Pov(r). Nine reflections of §; data set are used, u = (0,0, 1/2), Z
sections are shown.
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A2. Permitted origin shifts

The space group (€222, allows eight origin shifts.
However, only three of them, namely

t, =(1/2,0,0), t=(0,0,1/2), t,=(1/2,0,1/2),

24)

are essential because the rest are the zero shift and the
shifts connected with the shifts (24) by crystallographic
symmetry, i.e. by the translation (1/2,1/2, 0).

A3. Connectivity analysis for the sets of shift-dependent
reflections

Five different VLR sets were studied which included:

(i) all 52 reflections of the 60 A resolution zone;

(ii) the 11 strongest VLR reflections (Sy);

(iii) the 9 strongest t;-dependent reflections (S;);

(iv) the 10 strongest t,-dependent reflections (S,);

(v) the 11 strongest t;-dependent reflections (S5).

The lists of these reflections are given in Table 1. The
results of the connectivity analysis presented in Table 2
show that the use of a small number of VLR reflections
(both origin variable and origin invariant, set S,) de-
teriorate the connectivity characteristics. At the same
time, the t;-based origin-variable component p,,(r)
calculated with only nine reflections (set S;) reveals the
connectivity characteristics similar to the ones of 60 A
resolution synthesis calculated with all 52 VLR reflec-
tions. This table shows also that t; is the only permitted
origin shift which is favourable for the connectivity-
based search for phases of the p,,(r) component.

APPENDIX B
Theorem 1

Let subsets S,; and S, of structure factors and partial
Fourier syntheses p,i(r) and p,,(r) are defined for a
function p(r) in accordance with the formulae (5)—(8). If
u is a permitted origin shift and 2u = 0|, 4;, then p.;(r)
is the half-sum while p,,(r) is the half-difference of p(r)
and its shifted copy p(r — u).

Proof of Theorem 1. Let {FQ exp(ig{’)} be the struc-
ture factors corresponding to the sum

S(r) = 3[p(r) + pr — w).

The structure factors corresponding to po(r —u) are
{F, expi[g, + 27(h, u)]}, thus

{Fy exp(igy)} = 1 F,{1 + exp[2i(h, w)]} exp(ig,). (26)

Owing to the condition 2u = 0], 44, the scalar product
(h,u) is integer if (h,u)=0| and half-integer
otherwise. Therefore,

(25)

mod 1

if (h,u)= 0|

’ mod 1 (27)
otherwise.

(R explih)) = | Fo i)

923

Table 1. Very low resolution sets of reflections (see

Appendix A3)

So Sy S, S5

111 111 111 112
112 112 113 110
110 110 201 201
113 113 203 203
201 133 133 116
203 116 025 025
204 130 021 130
133 114 023 114
116 131 131 021
025 115 023
130 132

As a result, the Fourier series for the S(r) coincides with
the partial Fourier synthesis (7) and consequently S(r)
coincides with p;(r).

Let {Fp"exp(igy')} be the structure factors corre-
sponding to the difference

&=
)

(k)

Fig. 6. Fourier syntheses for: (a) p(r) (black) and p(r — u) (grey); (b)
Pov(r). Ten reflections of S, data set are used, u=(0,0,1/2), Z
sections are shown.
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Table 2. Connectivity analysis for different VLR phase sets

Exact phase values are used for the calculations. The number of centrosymmetric and noncentrosymmetric reflections is given in the column

headers.
Connected components and their size (in grid points)
Q, 26+26 So: 645 Sz 247 S5t 545 S5: 7+4
relative reflections of strongest VLR t,-variable ty-variable t3-variable
volume (%) the 60 A zone reflections reflections reflections reflections
5 8+148+8*80+8*43+8%35 8%260+8*46 8*306 8*306 8*306
10 8%422+8%190 4%1224 8%612 4%1224 4%1224
15 8%918 2%3672 8%918 4*1836 4*1836
20 8+1224 2%4896 8+1224 4+2448 4+2448
25 8*1530 2%6120 8%1530 2%6120 1*12240
30 4*3872 1*#14688 1*14688 1*14688 1*14688
1
D(r) =3 [p(r) — p(xr — w)]. (28)

It follows from p(r) = D(r) + S(r) that

{Fy exp(igy’)} = F, expligy) — Fyy exp(ig})
_ { Fyexp(ipy) if (h,w) # 0|04,

. (29)
0 otherwise,

so that the Fourier series for the difference (28) coin-
cides with partial Fourier synthesis (8) and thus

D(x) = Py (r).

APPENDIX C
Proof of Theorem 2 (§4.4)

It follows from (16) that the structure factors

Flexp(igg) of the function p.;(r) are

Fyexpligy) = 1,F, exp(ioy,), (30)
where
K1
7, = (1/K) ;;) exp[2ri(h, u,)]. (31)
It is obvious that
7, =1 for h e S;(T). (32)

Let us show that 7, = 0 otherwise.

Iy being a finite Abelian group, it may be represented
as a direct sum of its primary cyclic subgroups. In other
words, every u, may be uniquely represented in the form

u, =mu +mud + ... +mud, (33)

., u? are some shifts from {u,}*}, numbers

(j=1,...,n) are integers and
., P, are prime numbers such that P,P, ... P, = K

where u!, ..
0< m; < P/- -1
P ..
and
P]-ll](-) = 0|m0d1' (34)

Therefore,

W= W/K) X @) X @) S @ 69)

with

z; = exp[2ri(h, u))]. (36)

If for some j the value of (h, u}) 7 0 then, from (34),

Pi—1

_X,:O(Zj)mj =1- (Zj)Pj/(l - Zj)
= {1 — exp[27i(h, Pu))]}/(1 — z))
=0 37)

and the corresponding 7, = 0. As a consequence, 7, # 0
if and only if (h, u})) = 0 for all j, which gives 7, = 1. As

Fig. 7. The envelope of the test object.



V. Y. LUNIN, N. L. LUNINA AND A. G. URZHUMTSEV

follows from (33), in this case (h,u,) =0 for all
k=0,...,K—1,ie heS;I)).
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